
perlre - Perl regular expressions

This page describes the syntax of regular expressions in Perl.

If you haven't used regular expressions before, a quick-start introduction is available in ,
and a longer tutorial introduction is available in .

For reference on how regular expressions are used in matching operations, plus various examples of
the same, see discussions of , , and in .

Matching operations can have various modifiers. Modifiers that relate to the interpretation of the
regular expression inside are listed below. Modifiers that alter the way a regular expression is used by
Perl are detailed in and

.

i /i regex, case-insensitive regexp, case-insensitive regular expression, case-insensitive

Do case-insensitive pattern matching.

If is in effect, the case map is taken from the current locale. See .

m /m regex, multiline regexp, multiline regular expression, multiline

Treat string as multiple lines. That is, change "^" and "$" from matching the start or end of the
string to matching the start or end of any line anywhere within the string.

s /s regex, single-line regexp, single-line regular expression, single-line

Treat string as single line. That is, change "." to match any character whatsoever, even a
newline, which normally it would not match.

The and modifiers both override the setting. That is, no matter what contains,
without will force "^" to match only at the beginning of the string and "$" to match only at
the end (or just before a newline at the end) of the string. Together, as /ms, they let the "."
match any character whatsoever, while still allowing "^" and "$" to match, respectively, just
after and just before newlines within the string.

x /x

Extend your pattern's legibility by permitting whitespace and comments.

These are usually written as "the modifier", even though the delimiter in question might not really
be a slash. Any of these modifiers may also be embedded within the regular expression itself using
the construct. See below.

The modifier itself needs a little more explanation. It tells the regular expression parser to ignore
whitespace that is neither backslashed nor within a character class. You can use this to break up your
regular expression into (slightly) more readable parts. The character is also treated as a
metacharacter introducing a comment, just as in ordinary Perl code. This also means that if you want
real whitespace or characters in the pattern (outside a character class, where they are unaffected
by), that you'll either have to escape them or encode them using octal or hex escapes. Taken
together, these features go a long way towards making Perl's regular expressions more readable.
Note that you have to be careful not to include the pattern delimiter in the comment--perl has no way
of knowing you did not intend to close the pattern early. See the C-comment deletion code in .
/x

The patterns used in Perl pattern matching derive from supplied in the Version 8 regex routines. (The
routines are derived (distantly) from Henry Spencer's freely redistributable reimplementation of the V8
routines.) See for details.

Perl version 5.8.8 documentation - perlre

Page 1http://perldoc.perl.org

NAME

DESCRIPTION

perlrequick
perlretut

"Regexp Quote-Like Operators" in perlop

"Regexp Quote-Like Operators" in perlop "Gory details of parsing quoted
constructs" in perlop

perllocale

perlop

Version 8 Regular Expressions

m// s/// qr// ??

use locale

/s /m $* $* /s
/m

/x

(?...)

/x

#

#
/x

Regular Expressions

In particular the following metacharacters have their standard -ish meanings: metacharacter \ ^ .
$ | (() [[]

By default, the "^" character is guaranteed to match only the beginning of the string, the "$" character
only the end (or before the newline at the end), and Perl does certain optimizations with the
assumption that the string contains only one line. Embedded newlines will not be matched by "^" or
"$". You may, however, wish to treat a string as a multi-line buffer, such that the "^" will match after
any newline within the string, and "$" will match before any newline. At the cost of a little more
overhead, you can do this by using the /m modifier on the pattern match operator. (Older programs
did this by setting , but this practice is now deprecated.) ^ $ /m

To simplify multi-line substitutions, the "." character never matches a newline unless you use the
modifier, which in effect tells Perl to pretend the string is a single line--even if it isn't. The modifier
also overrides the setting of , in case you have some (badly behaved) older code that sets it in
another module. . /s

The following standard quantifiers are recognized: metacharacter quantifier * + ? {n} {n,} {n,m}

(If a curly bracket occurs in any other context, it is treated as a regular character. In particular, the
lower bound is not optional.) The "*" modifier is equivalent to , the "+" modifier to , and the
"?" modifier to . n and m are limited to integral values less than a preset limit defined when perl
is built. This is usually 32766 on the most common platforms. The actual limit can be seen in the error
message generated by code such as this:

By default, a quantified subpattern is "greedy", that is, it will match as many times as possible (given a
particular starting location) while still allowing the rest of the pattern to match. If you want it to match
the minimum number of times possible, follow the quantifier with a "?". Note that the meanings don't
change, just the "greediness": metacharacter greedy greedyness ? *? +? ?? {n}? {n,}? {n,m}?

Because patterns are processed as double quoted strings, the following also work: \t \n \r \f \a \l \u \L
\U \E \Q \0 \c \N \x

Perl version 5.8.8 documentation - perlre

Page 2http://perldoc.perl.org

egrep

\ Quote the next metacharacter
^ Match the beginning of the line
. Match any character (except newline)
$ Match the end of the line (or before newline at the end)
| Alternation
() Grouping
[] Character class

* Match 0 or more times
+ Match 1 or more times
? Match 1 or 0 times
{n} Match exactly n times
{n,} Match at least n times
{n,m} Match at least n but not more than m times

$_ **= $_ , / {$_} / for 2 .. 42;

*? Match 0 or more times
+? Match 1 or more times
?? Match 0 or 1 time
{n}? Match exactly n times
{n,}? Match at least n times
{n,m}? Match at least n but not more than m times

\t tab (HT, TAB)

$*

/s
/s

$*

{0,} {1,}
{0,1}

If is in effect, the case map used by , , and is taken from the current locale.
See . For documentation of , see .

You cannot include a literal or within a sequence. An unescaped or interpolates the
corresponding variable, while escaping will cause the literal string to be matched. You'll need to
write something like .

In addition, Perl defines the following: metacharacter \w \W \s \S \d \D \X \p \P \C word whitespace

A matches a single alphanumeric character (an alphabetic character, or a decimal digit) or , not a
whole word. Use to match a string of Perl-identifier characters (which isn't the same as matching
an English word). If is in effect, the list of alphabetic characters generated by is
taken from the current locale. See . You may use , , , , , and within
character classes, but if you try to use them as endpoints of a range, that's not a range, the "-" is
understood literally. If Unicode is in effect, matches also "\x{85}", "\x{2028}, and "\x{2029}", see

for more details about , , and , and about Unicode in general. You
can define your own and properties, see . \w \W word

The POSIX character class syntax character class

is also available. The available classes and their backslash equivalents (if available) are as follows:
character class alpha alnum ascii blank cntrl digit graph lower print punct space upper word xdigit

Perl version 5.8.8 documentation - perlre

Page 3http://perldoc.perl.org

\n newline (LF, NL)
\r return (CR)
\f form feed (FF)
\a alarm (bell) (BEL)
\e escape (think troff) (ESC)
\033 octal char (think of a PDP-11)
\x1B hex char
\x{263a} wide hex char (Unicode SMILEY)
\c[control char
\N{name} named char
\l lowercase next char (think vi)
\u uppercase next char (think vi)
\L lowercase till \E (think vi)
\U uppercase till \E (think vi)
\E end case modification (think vi)
\Q quote (disable) pattern metacharacters till \E

\w Match a "word" character (alphanumeric plus "_")
\W Match a non-"word" character
\s Match a whitespace character
\S Match a non-whitespace character
\d Match a digit character
\D Match a non-digit character
\pP Match P, named property. Use \p{Prop} for longer names.
\PP Match non-P
\X Match eXtended Unicode "combining character sequence",

equivalent to (?:\PM\pM*)
\C Match a single C char (octet) even under Unicode.

NOTE: breaks up characters into their UTF-8 bytes,
so you may end up with malformed pieces of UTF-8.
Unsupported in lookbehind.

[:class:]

use locale \l \L \u \U
\N{name}

$ @ \Q $ @
\$

m/\Quser\E\@\Qhost/

\w _
\w+
use locale \w

\w \W \s \S \d \D

\s
\pP \PP \X

\p \P

perllocale charnames

perllocale

perlunicode perluniintro
perlunicode

[1]

A GNU extension equivalent to , "all horizontal whitespace".

[2]

Not exactly equivalent to since the includes also the (very rare) "vertical
tabulator", "\ck", chr(11).

[3]

A Perl extension, see above.

For example use to match all the uppercase characters. Note that the are part of the
construct, not part of the whole character class. For example:

matches zero, one, any alphabetic character, and the percentage sign.

The following equivalences to Unicode \p{} constructs and equivalent backslash character classes (if
available), will hold: character class \p \p{}

For example and are equivalent.

If the pragma is not used but the pragma is, the classes correlate with the usual

Perl version 5.8.8 documentation - perlre

Page 4http://perldoc.perl.org

alpha
alnum
ascii
blank [1]
cntrl
digit \d
graph
lower
print
punct
space \s [2]
upper
word \w [3]
xdigit

[01[:alpha:]%]

[:...:] \p{...} backslash

alpha IsAlpha
alnum IsAlnum
ascii IsASCII
blank IsSpace
cntrl IsCntrl
digit IsDigit \d
graph IsGraph
lower IsLower
print IsPrint
punct IsPunct
space IsSpace

IsSpacePerl \s
upper IsUpper
word IsWord
xdigit IsXDigit

[\t]

\s [[:space:]]

[:upper:] []
[::]

[:lower:] \p{IsLower}

utf8 locale

isalpha(3) interface (except for "word" and "blank").

The assumedly non-obviously named classes are:

cntrl cntrl

Any control character. Usually characters that don't produce output as such but instead control
the terminal somehow: for example newline and backspace are control characters. All
characters with ord() less than 32 are most often classified as control characters (assuming
ASCII, the ISO Latin character sets, and Unicode), as is the character with the ord() value of
127 ().

graph graph

Any alphanumeric or punctuation (special) character.

print print

Any alphanumeric or punctuation (special) character or the space character.

punct punct

Any punctuation (special) character.

xdigit xdigit

Any hexadecimal digit. Though this may feel silly ([0-9A-Fa-f] would work just fine) it is
included for completeness.

You can negate the [::] character classes by prefixing the class name with a '^'. This is a Perl
extension. For example: character class, negation

Perl respects the POSIX standard in that POSIX character classes are only supported within a
character class. The POSIX character classes [.cc.] and [=cc=] are recognized but supported and
trying to use them will cause an error.

Perl defines the following zero-width assertions: zero-width assertion assertion regex, zero-width
assertion regexp, zero-width assertion regular expression, zero-width assertion \b \B \A \Z \z \G

A word boundary () is a spot between two characters that has a on one side of it and a on
the other side of it (in either order), counting the imaginary characters off the beginning and end of the
string as matching a . (Within character classes represents backspace rather than a word
boundary, just as it normally does in any double-quoted string.) The and are just like "^" and
"$", except that they won't match multiple times when the modifier is used, while "^" and "$" will
match at every internal line boundary. To match the actual end of the string and not ignore an optional
trailing newline, use . \b \A \Z \z /m

The assertion can be used to chain global matches (using), as described in

Perl version 5.8.8 documentation - perlre

Page 5http://perldoc.perl.org

DEL

\b \w \W

\W \b
\A \Z

/m

\z

\G m//g

POSIX traditional Unicode

[:^digit:] \D \P{IsDigit}
[:^space:] \S \P{IsSpace}
[:^word:] \W \P{IsWord}

\b Match a word boundary
\B Match a non-(word boundary)
\A Match only at beginning of string
\Z Match only at end of string, or before newline at the end
\z Match only at end of string
\G Match only at pos() (e.g. at the end-of-match position

of prior m//g)

not

"Regexp

. It is also useful when writing -like scanners, when you have
several patterns that you want to match against consequent substrings of your string, see the
previous reference. The actual location where will match can also be influenced by using
as an lvalue: see . Currently is only fully supported when anchored to the start of
the pattern; while it is permitted to use it elsewhere, as in , some such uses (

, for example) currently cause problems, and it is recommended that you avoid such usage
for now. \G

The bracketing construct creates capture buffers. To refer to the digit'th buffer use \<digit>
within the match. Outside the match use "$" instead of "\". (The \<digit> notation works in certain
circumstances outside the match. See the warning below about \1 vs $1 for details.) Referring back to
another part of the match is called a . regex, capture buffer regexp, capture buffer
regular expression, capture buffer backreference

There is no limit to the number of captured substrings that you may use. However Perl also uses \10,
\11, etc. as aliases for \010, \011, etc. (Recall that 0 means octal, so \011 is the character at number 9
in your coded character set; which would be the 10th character, a horizontal tab under ASCII.) Perl
resolves this ambiguity by interpreting \10 as a backreference only if at least 10 left parentheses have
opened before it. Likewise \11 is a backreference only if at least 11 left parentheses have opened
before it. And so on. \1 through \9 are always interpreted as backreferences.

Examples:

Several special variables also refer back to portions of the previous match. returns whatever the
last bracket match matched. returns the entire matched string. (At one point did also, but now it
returns the name of the program.) returns everything before the matched string. returns
everything after the matched string. And contains whatever was matched by the most-recently
closed group (submatch). can be used in extended patterns (see below), for example to assign a
submatch to a variable. $+ $^N $& $` $'

The numbered match variables ($1, $2, $3, etc.) and the related punctuation set (, , , , and
) are all dynamically scoped until the end of the enclosing block or until the next successful match,

whichever comes first. (See .) $+ $^N $& $` $' $1 $2 $3 $4 $5 $6
$7 $8 $9

: failed matches in Perl do not reset the match variables, which makes it easier to write code
that tests for a series of more specific cases and remembers the best match.

: Once Perl sees that you need one of , , or anywhere in the program, it has to
provide them for every pattern match. This may substantially slow your program. Perl uses the same
mechanism to produce $1, $2, etc, so you also pay a price for each pattern that contains capturing
parentheses. (To avoid this cost while retaining the grouping behaviour, use the extended regular
expression instead.) But if you never use , or , then patterns capturing
parentheses will not be penalized. So avoid , , and if you can, but if you can't (and some
algorithms really appreciate them), once you've used them once, use them at will, because you've

Perl version 5.8.8 documentation - perlre

Page 6http://perldoc.perl.org

Quote-Like Operators" in perlop

"pos" in perlfunc

backreference

"Compound Statements" in perlsyn

without

lex

\G pos()
\G

/(?<=\G..)./g
/.\G/g

(...)

$+
$& $0

$‘ $’
$^N

$^N

$+ $& $‘ $’
$^N

$& $‘ $’

(?: ...) $& $‘ $’
$& $’ $‘

s/^([^]*) *([^]*)/$2 $1/; # swap first two words

if (/(.)\1/) { # find first doubled char
print "’$1’ is the first doubled character\n";

}

if (/Time: (..):(..):(..)/) { # parse out values
$hours = $1;
$minutes = $2;
$seconds = $3;

}

NOTE

WARNING

already paid the price. As of 5.005, is not so costly as the other two. $& $` $'

Backslashed metacharacters in Perl are alphanumeric, such as , , . Unlike some other regular
expression languages, there are no backslashed symbols that aren't alphanumeric. So anything that
looks like \\, \(, \), \<, \>, \{, or \} is always interpreted as a literal character, not a metacharacter. This
was once used in a common idiom to disable or quote the special meanings of regular expression
metacharacters in a string that you want to use for a pattern. Simply quote all non-"word" characters:

(If is set, then this depends on the current locale.) Today it is more common to use the
quotemeta() function or the metaquoting escape sequence to disable all metacharacters' special
meanings like this:

Beware that if you put literal backslashes (those not inside interpolated variables) between and ,
double-quotish backslash interpolation may lead to confusing results. If you to use literal
backslashes within , consult .

Perl also defines a consistent extension syntax for features not found in standard tools like and
. The syntax is a pair of parentheses with a question mark as the first thing within the parentheses.

The character after the question mark indicates the extension.

The stability of these extensions varies widely. Some have been part of the core language for many
years. Others are experimental and may change without warning or be completely removed. Check
the documentation on an individual feature to verify its current status.

A question mark was chosen for this and for the minimal-matching construct because 1) question
marks are rare in older regular expressions, and 2) whenever you see one, you should stop and
"question" exactly what is going on. That's psychology...

(?#)

A comment. The text is ignored. If the modifier enables whitespace formatting,
a simple will suffice. Note that Perl closes the comment as soon as it sees a ,
so there is no way to put a literal in the comment.

(?)

One or more embedded pattern-match modifiers, to be turned on (or turned off, if
preceded by) for the remainder of the pattern or the remainder of the enclosing
pattern group (if any). This is particularly useful for dynamic patterns, such as
those read in from a configuration file, read in as an argument, are specified in a
table somewhere, etc. Consider the case that some of which want to be case
sensitive and some do not. The case insensitive ones need to include merely
at the front of the pattern. For example:

These modifiers are restored at the end of the enclosing group. For example,

Perl version 5.8.8 documentation - perlre

Page 7http://perldoc.perl.org

$&

\b \w \n

use locale
\Q

\Q \E

\Q...\E

(?#text)

/x
)

)

(?imsx-imsx)

-

(?i)

$pattern =~ s/(\W)/\\$1/g;

/$unquoted\Q$quoted\E$unquoted/

$pattern = "foobar";
if (/$pattern/i) { }

more flexible:

$pattern = "(?i)foobar";
if (/$pattern/) { }

((?i) blah) \s+ \1

need
"Gory details of parsing quoted constructs" in perlop

Extended Patterns
awk

lex

will match a repeated (!) word in any case, assuming
modifier, and no modifier outside this group.

(?:)

This is for clustering, not capturing; it groups subexpressions like "()", but doesn't
make backreferences as "()" does. So

is like

but doesn't spit out extra fields. It's also cheaper not to capture characters if you
don't need to.

Any letters between and act as flags modifiers as with . For
example,

is equivalent to the more verbose

(?=) look-ahead, positive lookahead, positive

A zero-width positive look-ahead assertion. For example, matches
a word followed by a tab, without including the tab in .

(?!) look-ahead, negative lookahead, negative

A zero-width negative look-ahead assertion. For example
matches any occurrence of "foo" that isn't followed by "bar". Note however that
look-ahead and look-behind are NOT the same thing. You cannot use this for
look-behind.

If you are looking for a "bar" that isn't preceded by a "foo", will not
do what you want. That's because the is just saying that the next thing
cannot be "foo"--and it's not, it's a "bar", so "foobar" will match. You would have to
do something like for that. We say "like" because there's the
case of your "bar" not having three characters before it. You could cover that this
way: . Sometimes it's still easier just to say:

For look-behind see below.

(?<=) look-behind, positive lookbehind, positive

A zero-width positive look-behind assertion. For example,
matches a word that follows a tab, without including the tab in . Works only for
fixed-width look-behind.

(?<!) look-behind, negative lookbehind, negative

A zero-width negative look-behind assertion. For example
matches any occurrence of "foo" that does not follow "bar". Works only for
fixed-width look-behind.

(?{}) regex, code in regexp, code in regular expression, code in

: This extended regular expression feature is considered highly
experimental, and may be changed or deleted without notice.

Perl version 5.8.8 documentation - perlre

Page 8http://perldoc.perl.org

@fields = split(/\b(?:a|b|c)\b/)

@fields = split(/\b(a|b|c)\b/)

/(?s-i:more.*than).*million/i

/(?:(?s-i)more.*than).*million/i

if (/bar/ && $‘ !~ /foo$/)

including the case blah x
i

(?:pattern)

(?imsx-imsx:pattern)

? : (?imsx-imsx)

(?=pattern)

/\w+(?=\t)/
$&

(?!pattern)

/foo(?!bar)/

/(?!foo)bar/
(?!foo)

/(?!foo)...bar/

/(?:(?!foo)...|^.{0,2})bar/

(?<=pattern)

/(?<=\t)\w+/
$&

(?<!pattern)

/(?<!bar)foo/

(?{ code })

WARNING

This zero-width assertion evaluates any embedded Perl code. It always succeeds,
and its is not interpolated. Currently, the rules to determine where the
ends are somewhat convoluted.

This feature can be used together with the special variable to capture the
results of submatches in variables without having to keep track of the number of
nested parentheses. For example:

Inside the block, refers to the string the regular expression is
matching against. You can also use to know what is the current position of
matching within this string.

The is properly scoped in the following sense: If the assertion is backtracked
(compare), all changes introduced after ization are undone, so
that

will set . Note that after the match, $cnt returns to the globally
introduced value, because the scopes that restrict operators are unwound.

This assertion may be used as a
switch. If used in this way, the result of evaluation of is put into the
special variable . This happens immediately, so can be used from other

assertions inside the same regular expression.

The assignment to above is properly localized, so the old value of is
restored if the assertion is backtracked; compare .

For reasons of security, this construct is forbidden if the regular expression
involves run-time interpolation of variables, unless the perilous
pragma has been used (see), or the variables contain results of operator
(see).

This restriction is because of the wide-spread and remarkably convenient custom
of using run-time determined strings as patterns. For example:

Before Perl knew how to execute interpolated code within a pattern, this operation
was completely safe from a security point of view, although it could raise an
exception from an illegal pattern. If you turn on the , though, it is
no longer secure, so you should only do so if you are also using taint checking.

Perl version 5.8.8 documentation - perlre

Page 9http://perldoc.perl.org

code code

$^N

(?{...}) $_
pos()

code
local

$res = 4
local

(?(condition)yes-pattern|no-pattern)
code

$^R $^R
(?{ code })

$^R $^R

use re ’eval’
qr//

use re ’eval’

$_ = "The brown fox jumps over the lazy dog";
/the (\S+)(?{ $color = $^N }) (\S+)(?{ $animal = $^N })/i;
print "color = $color, animal = $animal\n";

$_ = ’a’ x 8;
m<

(?{ $cnt = 0 }) # Initialize $cnt.
(
a
(?{

local $cnt = $cnt + 1; # Update $cnt,
backtracking-safe.

})
)*
aaaa
(?{ $res = $cnt }) # On success copy to non-localized
location.

>x;

$re = <>;
chomp $re;
$string =~ /$re/;

Backtracking

not

Backtracking

re
"qr/STRING/imosx" in perlop

Better yet, use the carefully constrained evaluation within a Safe compartment.
See for details about both these mechanisms.

(??{}) regex, postponed regexp, postponed regular expression, postponed regex,
recursive regexp, recursive regular expression, recursive

: This extended regular expression feature is considered highly
experimental, and may be changed or deleted without notice. A simplified version
of the syntax may be introduced for commonly used idioms.

This is a "postponed" regular subexpression. The is evaluated at run time, at
the moment this subexpression may match. The result of evaluation is considered
as a regular expression and matched as if it were inserted instead of this construct.

The is not interpolated. As before, the rules to determine where the
ends are currently somewhat convoluted.

The following pattern matches a parenthesized group:

backtrack backtracking

: This extended regular expression feature is considered highly
experimental, and may be changed or deleted without notice.

An "independent" subexpression, one which matches the substring that a
would match if anchored at the given position, and it matches

. This construct is useful for optimizations of what
would otherwise be "eternal" matches, because it will not backtrack (see

). It may also be useful in places where the "grab all you can, and do
not give anything back" semantic is desirable.

For example: will never match, since (anchored at the
beginning of string, as above) will match characters at the beginning of string,
leaving no for to match. In contrast, will match the same as , since
the match of the subgroup is influenced by the following group (see

). In particular, inside will match fewer characters than a
standalone , since this makes the tail match.

An effect similar to may be achieved by writing
. This matches the same substring as a standalone , and the following eats
the matched string; it therefore makes a zero-length assertion into an analogue of

. (The difference between these two constructs is that the second one
uses a capturing group, thus shifting ordinals of backreferences in the rest of a
regular expression.)

Consider this pattern:

Perl version 5.8.8 documentation - perlre

Page 10http://perldoc.perl.org

perlsec

standalone
nothing other than this substring

Backtracking

all

Backtracking

(??{ code })

code

code code

(?>pattern)

pattern

^(?>a*)ab (?>a*)
a

a ab a*ab a+b
a* ab
a* a*ab

a*

(?>pattern) (?=(pattern))\1
a+ \1

(?>...)

WARNING

WARNING

$re = qr{
\(
(?:

(?> [^()]+) # Non-parens without backtracking
|

(??{ $re }) # Group with matching parens
)*
\)

}x;

m{ \(
(
[^()]+ # x+

|
\([^()]* \)

)+

That will efficiently match a nonempty group with matching parentheses two levels
deep or less. However, if there is no such group, it will take virtually forever on a
long string. That's because there are so many different ways to split a long string
into several substrings. This is what is doing, and is similar to a
subpattern of the above pattern. Consider how the pattern above detects no-match
on in several seconds, but that each extra letter
doubles this time. This exponential performance will make it appear that your
program has hung. However, a tiny change to this pattern

which uses matches exactly when the one above does (verifying this
yourself would be a productive exercise), but finishes in a fourth the time when
used on a similar string with 1000000 s. Be aware, however, that this pattern
currently triggers a warning message under the pragma or
switch saying it .

On simple groups, such as the pattern , a comparable effect may
be achieved by negative look-ahead, as in . This was only
4 times slower on a string with 1000000 s.

The "grab all you can, and do not give anything back" semantic is desirable in
many situations where on the first sight a simple looks like the correct solution.
Suppose we parse text with comments being delimited by followed by some
optional (horizontal) whitespace. Contrary to its appearance, the
correct subexpression to match the comment delimiter, because it may "give up"
some whitespace if the remainder of the pattern can be made to match that way.
The correct answer is either one of these:

For example, to grab non-empty comments into $1, one should use either one of
these:

Which one you pick depends on which of these expressions better reflects the
above specification of comments.

(?()

: This extended regular expression feature is considered highly
experimental, and may be changed or deleted without notice.

Conditional expression. should be either an integer in parentheses
(which is valid if the corresponding pair of parentheses matched), or
look-ahead/look-behind/evaluate zero-width assertion.

Perl version 5.8.8 documentation - perlre

Page 11http://perldoc.perl.org

\)
}x

m{ \(
(
(?> [^()]+) # change x+ above to (?> x+)

|
\([^()]* \)

)+
\)

}x

(?>#[\t]*)
#[\t]*(?![\t])

/ (?> \# [\t]*) (.+) /x;
/ \# [\t]* ([^ \t] .*) /x;

(.+)+ (.+)+

((()aaaaaaaaaaaaaaaaaa

(?>...)

a
use warnings

"matches null string many times in regex"

(?> [^()]+)
[^()]+ (?! [^()])

a

()*
#

#[\t]*

(?(condition)yes-pattern|no-pattern)

(?(condition)yes-pattern)

(condition)

-w

WARNING

is not

For example:

matches a chunk of non-parentheses, possibly included in parentheses
themselves.

NOTE: This section presents an abstract approximation of regular expression behavior. For a more
rigorous (and complicated) view of the rules involved in selecting a match among possible
alternatives, see .

A fundamental feature of regular expression matching involves the notion called , which
is currently used (when needed) by all regular expression quantifiers, namely , , , , ,
and . Backtracking is often optimized internally, but the general principle outlined here is valid.

For a regular expression to match, the regular expression must match, not just part of it. So if
the beginning of a pattern containing a quantifier succeeds in a way that causes later parts in the
pattern to fail, the matching engine backs up and recalculates the beginning part--that's why it's called
backtracking.

Here is an example of backtracking: Let's say you want to find the word following "foo" in the string
"Food is on the foo table.":

When the match runs, the first part of the regular expression () finds a possible match right
at the beginning of the string, and loads up $1 with "Foo". However, as soon as the matching engine
sees that there's no whitespace following the "Foo" that it had saved in $1, it realizes its mistake and
starts over again one character after where it had the tentative match. This time it goes all the way
until the next occurrence of "foo". The complete regular expression matches this time, and you get the
expected output of "table follows foo."

Sometimes minimal matching can help a lot. Imagine you'd like to match everything between "foo"
and "bar". Initially, you write something like this:

Which perhaps unexpectedly yields:

That's because was greedy, so you get everything between the "foo" and the "bar". Here
it's more effective to use minimal matching to make sure you get the text between a "foo" and the first
"bar" thereafter.

Perl version 5.8.8 documentation - perlre

Page 12http://perldoc.perl.org

m{ (\()?
[^()]+
(?(1) \))

}x

$_ = "Food is on the foo table.";
if (/\b(foo)\s+(\w+)/i) {

print "$2 follows $1.\n";
}

$_ = "The food is under the bar in the barn.";
if (/foo(.*)bar/) {

print "got <$1>\n";
}

got <d is under the bar in the >

if (/foo(.*?)bar/) { print "got <$1>\n" }
got <d is under the >

Backtracking

Combining pieces together

backtracking

entire

first last

* *? + +? {n,m}
{n,m}?

\b(foo)

.*

Here's another example: let's say you'd like to match a number at the end of a string, and you also
want to keep the preceding part of the match. So you write this:

That won't work at all, because was greedy and gobbled up the whole string. As can match
on an empty string the complete regular expression matched successfully.

Here are some variants, most of which don't work:

That will print out:

As you see, this can be a bit tricky. It's important to realize that a regular expression is merely a set of
assertions that gives a definition of success. There may be 0, 1, or several different ways that the
definition might succeed against a particular string. And if there are multiple ways it might succeed,
you need to understand backtracking to know which variety of success you will achieve.

When using look-ahead assertions and negations, this can all get even trickier. Imagine you'd like to
find a sequence of non-digits not followed by "123". You might try to write that as

Perl version 5.8.8 documentation - perlre

Page 13http://perldoc.perl.org

$_ = "I have 2 numbers: 53147";
if (/(.*)(\d*)/) { # Wrong!

print "Beginning is <$1>, number is <$2>.\n";
}

Beginning is <I have 2 numbers: 53147>, number is <>.

$_ = "I have 2 numbers: 53147";
@pats = qw{

(.*)(\d*)
(.*)(\d+)
(.*?)(\d*)
(.*?)(\d+)
(.*)(\d+)$
(.*?)(\d+)$
(.*)\b(\d+)$
(.*\D)(\d+)$

};

for $pat (@pats) {
printf "%-12s ", $pat;
if (/$pat/) {

print "<$1> <$2>\n";
} else {

print "FAIL\n";
}

}

(.*)(\d*) <I have 2 numbers: 53147> <>
(.*)(\d+) <I have 2 numbers: 5314> <7>
(.*?)(\d*) <> <>
(.*?)(\d+) <I have > <2>
(.*)(\d+)$ <I have 2 numbers: 5314> <7>
(.*?)(\d+)$ <I have 2 numbers: > <53147>
(.*)\b(\d+)$ <I have 2 numbers: > <53147>
(.*\D)(\d+)$ <I have 2 numbers: > <53147>

$_ = "ABC123";

.* \d*

But that isn't going to match; at least, not the way you're hoping. It claims that there is no 123 in the
string. Here's a clearer picture of why that pattern matches, contrary to popular expectations:

This prints

You might have expected test 3 to fail because it seems to a more general purpose version of test 1.
The important difference between them is that test 3 contains a quantifier () and so can use
backtracking, whereas test 1 will not. What's happening is that you've asked "Is it true that at the start
of $x, following 0 or more non-digits, you have something that's not 123?" If the pattern matcher had
let expand to "ABC", this would have caused the whole pattern to fail.

The search engine will initially match with "ABC". Then it will try to match with "123",
which fails. But because a quantifier () has been used in the regular expression, the search
engine can backtrack and retry the match differently in the hope of matching the complete regular
expression.

The pattern really, wants to succeed, so it uses the standard pattern back-off-and-retry and lets
expand to just "AB" this time. Now there's indeed something following "AB" that is not "123". It's

"C123", which suffices.

We can deal with this by using both an assertion and a negation. We'll say that the first part in $1
must be followed both by a digit and by something that's not "123". Remember that the look-aheads
are zero-width expressions--they only look, but don't consume any of the string in their match. So
rewriting this way produces what you'd expect; that is, case 5 will fail, but case 6 succeeds:

In other words, the two zero-width assertions next to each other work as though they're ANDed
together, just as you'd use any built-in assertions: matches only if you're at the beginning of the
line AND the end of the line simultaneously. The deeper underlying truth is that juxtaposition in
regular expressions always means AND, except when you write an explicit OR using the vertical bar.

means match "a" AND (then) match "b", although the attempted matches are made at different
positions because "a" is not a zero-width assertion, but a one-width assertion.

: particularly complicated regular expressions can take exponential time to solve because
of the immense number of possible ways they can use backtracking to try match. For example,

Perl version 5.8.8 documentation - perlre

Page 14http://perldoc.perl.org

if (/^\D*(?!123)/) { # Wrong!
print "Yup, no 123 in $_\n";

}

$x = ’ABC123’;
$y = ’ABC445’;

print "1: got $1\n" if $x =~ /^(ABC)(?!123)/;
print "2: got $1\n" if $y =~ /^(ABC)(?!123)/;

print "3: got $1\n" if $x =~ /^(\D*)(?!123)/;
print "4: got $1\n" if $y =~ /^(\D*)(?!123)/;

2: got ABC
3: got AB
4: got ABC

print "5: got $1\n" if $x =~ /^(\D*)(?=\d)(?!123)/;
print "6: got $1\n" if $y =~ /^(\D*)(?=\d)(?!123)/;

6: got ABC

\D*

\D*

\D* (?!123
\D*

\D*

/^$/

/ab/

really

WARNING

without internal optimizations done by the regular expression engine, this will take a painfully long
time to run:

And if you used 's in the internal groups instead of limiting them to 0 through 5 matches, then it
would take forever--or until you ran out of stack space. Moreover, these internal optimizations are not
always applicable. For example, if you put instead of on the external group, no current
optimization is applicable, and the match takes a long time to finish.

A powerful tool for optimizing such beasts is what is known as an "independent group", which does
not backtrack (see). Note also that zero-length look-ahead/look-behind assertions will
not backtrack to make the tail match, since they are in "logical" context: only whether they match is
considered relevant. For an example where side-effects of look-ahead have influenced the
following match, see .

In case you're not familiar with the "regular" Version 8 regex routines, here are the pattern-matching
rules not described above.

Any single character matches itself, unless it is a with a special meaning described
here or above. You can cause characters that normally function as metacharacters to be interpreted
literally by prefixing them with a "\" (e.g., "\." matches a ".", not any character; "\\" matches a "\"). A
series of characters matches that series of characters in the target string, so the pattern
would match "blurfl" in the target string.

You can specify a character class, by enclosing a list of characters in , which will match any one
character from the list. If the first character after the "[" is "^", the class matches any character not in
the list. Within a list, the "-" character specifies a range, so that represents all characters between
"a" and "z", inclusive. If you want either "-" or "]" itself to be a member of a class, put it at the start of
the list (possibly after a "^"), or escape it with a backslash. "-" is also taken literally when it is at the
end of the list, just before the closing "]". (The following all specify the same class of three characters:

, , and . All are different from , which specifies a class containing
twenty-six characters, even on EBCDIC based coded character sets.) Also, if you try to use the
character classes , , , , , or as endpoints of a range, that's not a range, the "-" is
understood literally.

Note also that the whole range idea is rather unportable between character sets--and even within
character sets they may cause results you probably didn't expect. A sound principle is to use only
ranges that begin from and end at either alphabets of equal case ([a-e], [A-E]), or digits ([0-9]).
Anything else is unsafe. If in doubt, spell out the character sets in full.

Characters may be specified using a metacharacter syntax much like that used in C: "\n" matches a
newline, "\t" a tab, "\r" a carriage return, "\f" a form feed, etc. More generally, \ , where is a
string of octal digits, matches the character whose coded character set value is . Similarly, \x ,
where are hexadecimal digits, matches the character whose numeric value is . The expression
\c matches the character control- . Finally, the "." metacharacter matches any character except "\n"
(unless you use).

You can specify a series of alternatives for a pattern using "|" to separate them, so that
will match any of "fee", "fie", or "foe" in the target string (as would). The

first alternative includes everything from the last pattern delimiter ("(", "[", or the beginning of the
pattern) up to the first "|", and the last alternative contains everything from the last "|" to the next
pattern delimiter. That's why it's common practice to include alternatives in parentheses: to minimize
confusion about where they start and end.

Alternatives are tried from left to right, so the first alternative found for which the entire expression
matches, is the one that is chosen. This means that alternatives are not necessarily greedy. For

Perl version 5.8.8 documentation - perlre

Page 15http://perldoc.perl.org

’aaaaaaaaaaaa’ =~ /((a{0,5}){0,5})*[c]/

*

{0,5} *

blurfl

[]

a-z

[-az] [az-] [a\-z] [a-z]

\w \W \s \S \d \D

/s

fee|fie|foe f(e|i|o)e

(?>pattern)

(?>pattern)
might

metacharacter

nnn nnn
nnn nn

nn nn
x x

Version 8 Regular Expressions

example: when matching against "barefoot", only the "foo" part will match, as that is the
first alternative tried, and it successfully matches the target string. (This might not seem important, but
it is important when you are capturing matched text using parentheses.)

Also remember that "|" is interpreted as a literal within square brackets, so if you write
you're really only matching .

Within a pattern, you may designate subpatterns for later reference by enclosing them in parentheses,
and you may refer back to the th subpattern later in the pattern using the metacharacter \ .
Subpatterns are numbered based on the left to right order of their opening parenthesis. A
backreference matches whatever actually matched the subpattern in the string being examined, not
the rules for that subpattern. Therefore, will match "0x1234 0x4321", but not
"0x1234 01234", because subpattern 1 matched "0x", even though the rule could potentially
match the leading 0 in the second number.

Some people get too used to writing things like:

This is grandfathered for the RHS of a substitute to avoid shocking the addicts, but it's a dirty
habit to get into. That's because in PerlThink, the righthand side of an is a double-quoted string.

in the usual double-quoted string means a control-A. The customary Unix meaning of is
kludged in for . However, if you get into the habit of doing that, you get yourself into trouble if you
then add an modifier.

Or if you try to do

You can't disambiguate that by saying , whereas you can fix it with . The operation
of interpolation should not be confused with the operation of matching a backreference. Certainly they
mean two different things on the side of the .

: Difficult material (and prose) ahead. This section needs a rewrite.

Regular expressions provide a terse and powerful programming language. As with most other power
tools, power comes together with the ability to wreak havoc.

A common abuse of this power stems from the ability to make infinite loops using regular expressions,
with something as innocuous as:

The can match at the beginning of , and since the position in the string is not moved by the
match, would match again and again because of the modifier. Another common way to create a
similar cycle is with the looping modifier :

or

Perl version 5.8.8 documentation - perlre

Page 16http://perldoc.perl.org

foo|foot

[fee|fie|foe] [feio|]

(0|0x)\d*\s\1\d*
0|0x

s///
\1 \1

s///
/e

\{1}000 ${1}000

s///

o? ’foo’
o? *

//g

n n

left

Warning on \1 vs $1

Repeated patterns matching zero-length substring

$pattern =~ s/(\W)/\\\1/g;

s/(\d+)/ \1 + 1 /eg; # causes warning under -w

s/(\d+)/\1000/;

’foo’ =~ m{ (o?)* }x;

@matches = (’foo’ =~ m{ o? }xg);

print "match: <$&>\n" while ’foo’ =~ m{ o? }xg;

sed

WARNING

or the loop implied by split().

However, long experience has shown that many programming tasks may be significantly simplified by
using repeated subexpressions that may match zero-length substrings. Here's a simple example
being:

Thus Perl allows such constructs, by . The rules for this are
different for lower-level loops given by the greedy modifiers , and for higher-level ones like the

modifier or split() operator.

The lower-level loops are (that is, the loop is broken) when Perl detects that a repeated
expression matched a zero-length substring. Thus

is made equivalent to

The higher level-loops preserve an additional state between iterations: whether the last match was
zero-length. To break the loop, the following match after a zero-length match is prohibited to have a
length of zero. This prohibition interacts with backtracking (see), and so the
match is chosen if the match is of zero length.

For example:

results in . At each position of the string the best match given by non-greedy
is the zero-length match, and the match is what is matched by . Thus zero-length

matches alternate with one-character-long matches.

Similarly, for repeated the second-best match is the match at the position one notch further in
the string.

The additional state of being is associated with the matched string, and is
reset by each assignment to pos(). Zero-length matches at the end of the previous match are ignored
during .

Each of the elementary pieces of regular expressions which were described before (such as or)
could match at most one substring at the given position of the input string. However, in a typical
regular expression these elementary pieces are combined into more complicated patterns using
combining operators , , etc (in these examples and are regular subexpressions).

Such combinations can include alternatives, leading to a problem of choice: if we match a regular
expression against , will it match substring or ? One way to describe which
substring is actually matched is the concept of backtracking (see). However, this
description is too low-level and makes you think in terms of a particular implementation.

Another description starts with notions of "better"/"worse". All the substrings which may be matched

Perl version 5.8.8 documentation - perlre

Page 17http://perldoc.perl.org

@chars = split //, $string; # // is not magic in split
($whitewashed = $string) =~ s/()/ /g; # parens avoid magic s// /

m{ (?: NON_ZERO_LENGTH | ZERO_LENGTH)* }x;

m{ (?: NON_ZERO_LENGTH)*
|
(?: ZERO_LENGTH)?

}x;

$_ = ’bar’;
s/\w??/<$&>/g;

forcefully breaking the infinite loop

interrupted

Backtracking second best
best

second best

matched with zero-length

Backtracking

*+{}
/g

<><><a><><r><>
?? \w

m/()/g

split

ab \Z

ST S|T S* S T

a|ab "abc" "a" "ab"

Combining pieces together

by the given regular expression can be sorted from the "best" match to the "worst" match, and it is the
"best" match which is chosen. This substitutes the question of "what is chosen?" by the question of
"which matches are better, and which are worse?".

Again, for elementary pieces there is no such question, since at most one match at a given position is
possible. This section describes the notion of better/worse for combining operators. In the description
below and are regular subexpressions.

Consider two possible matches, and , and are substrings which can be matched
by , and are substrings which can be matched by .

If is better match for than , is a better match than .

If and coincide: is a better match than if is better match for than .

When can match, it is a better match than when only can match.

Ordering of two matches for is the same as for . Similar for two matches for .

Matches as (repeated as many times as necessary).

Matches as .

Matches as .

, ,

Same as , , respectively.

, ,

Same as , , respectively.

Matches the best match for and only that.

,

Only the best match for is considered. (This is important only if has capturing parentheses,
and backreferences are used somewhere else in the whole regular expression.)

,

For this grouping operator there is no need to describe the ordering, since only whether or not
can match is important.

The ordering is the same as for the regular expression which is the result of EXPR.

Recall that which of or actually matches is already determined.
The ordering of the matches is the same as for the chosen subexpression.

The above recipes describe the ordering of matches . One more rule is needed to
understand how a match is determined for the whole regular expression: a match at an earlier
position is always better than a match at a later position.

Perl version 5.8.8 documentation - perlre

Page 18http://perldoc.perl.org

S T

ST

AB A’B’ A A’
S B B’ T

A S A’ AB A’B’

A A’ AB AB’ B T B’

S|T

S T

S S T

S{REPEAT_COUNT}

SSS...S

S{min,max}

S{max}|S{max-1}|...|S{min+1}|S{min}

S{min,max}?

S{min}|S{min+1}|...|S{max-1}|S{max}

S? S* S+

S{0,1} S{0,BIG_NUMBER} S{1,BIG_NUMBER}

S?? S*? S+?

S{0,1}? S{0,BIG_NUMBER}? S{1,BIG_NUMBER}?

(?>S)

S

(?=S) (?<=S)

S S

(?!S) (?<!S)

S

(??{ EXPR })

(?(condition)yes-pattern|no-pattern)

yes-pattern no-pattern

at a given position

Overloaded constants (see) provide a simple way to extend the functionality of the RE
engine.

Suppose that we want to enable a new RE escape-sequence which matches at boundary
between whitespace characters and non-whitespace characters. Note that

matches exactly at these positions, so we want to have each
in the place of the more complicated version. We can create a module to do this:

Now enables the new escape in constant regular expressions, i.e., those without any
runtime variable interpolations. As documented in , this conversion will work only over literal
parts of regular expressions. For the variable part of this regular expression needs to be
converted explicitly (but only if the special meaning of should be enabled inside $re):

This document varies from difficult to understand to completely and utterly opaque. The wandering
prose riddled with jargon is hard to fathom in several places.

This document needs a rewrite that separates the tutorial content from the reference content.

.

.

Perl version 5.8.8 documentation - perlre

Page 19http://perldoc.perl.org

Creating custom RE engines
overload

overload

perlrequick

perlretut

\Y|

(?=\S)(?<!\S)|(?!\S)(?<=\S)
\Y| customre

use customre

\Y|$re\Y|
\Y|

package customre;
use overload;

sub import {
shift;
die "No argument to customre::import allowed" if @_;
overload::constant ’qr’ => \&convert;

}

sub invalid { die "/$_[0]/: invalid escape ’\\$_[1]’"}

We must also take care of not escaping the legitimate \\Y|
sequence, hence the presence of ’\\’ in the conversion rules.
my %rules = (’\\’ => ’\\\\’,
’Y|’ => qr/(?=\S)(?<!\S)|(?!\S)(?<=\S)/);
sub convert {
my $re = shift;
$re =~ s{

\\ (\\ | Y .)
}
{ $rules{$1} or invalid($re,$1) }sgex;

return $re;
}

use customre;
$re = <>;
chomp $re;
$re = customre::convert $re;
/\Y|$re\Y|/;

BUGS

SEE ALSO

.

.

.

.

.

.

by Jeffrey Friedl, published by O'Reilly and Associates.

Perl version 5.8.8 documentation - perlre

Page 20http://perldoc.perl.org

"Regexp Quote-Like Operators" in perlop

"Gory details of parsing quoted constructs" in perlop

perlfaq6

"pos" in perlfunc

perllocale

perlebcdic

Mastering Regular Expressions

