	
	

What Is JScript?

JScript is the Microsoft implementation of the ECMA 262 language specification (ECMAScript Edition 3). With only a few minor exceptions (to maintain backwards compatibility), JScript is a full implementation of the ECMA standard. This overview is intended to help you get started with JScript.

Using JScript

JScript is an interpreted, object-based scripting language. Although it has fewer capabilities than full-fledged object-oriented languages like C++, JScript is more than sufficiently powerful for its intended purposes.

JScript is not a cut-down version of another language (it is only distantly and indirectly related to Java, for example), nor is it a simplification of anything. It is, however, limited. You cannot write stand-alone applications in it, for example, and it has no built-in support for reading or writing files. Moreover, JScript scripts can run only in the presence of an interpreter or "host", such as Active Server Pages (ASP), Internet Explorer, or Windows Script Host.

JScript is a loosely typed language. Loosely typed means you do not have to declare the data types of variables explicitly. In fact, JScript takes it one step further. You cannot explicitly declare data types in JScript. Moreover, in many cases JScript performs conversions automatically when needed. For instance, if you add a number to an item consisting of text (a string), the number is converted to text.

The rest of this user's guide is an overview of JScript features. For full details of the language implementation, consult the language reference.

Note The code in many of the following examples is somewhat more explicit and less dense than code you are likely to find in actual Web pages. The intent here is to clarify the concepts, not to express optimal coding conciseness and style. In any case, there is no shame in writing code that you can read and easily understand six months after you write it.

Writing JScript Code

Like many other programming languages, Microsoft JScript is written in text format, and organized into statements, blocks consisting of related sets of statements, and comments. Within a statement you can use variables, immediate data such as strings and numbers (called "literals"), and expressions.

Statements

A JScript program is a collection of statements. A JScript statement is equivalent to a complete sentence in English. JScript statements combine expressions in such a way that they carry out one complete task.

A statement consists of one or more expressions, keywords, or operators (symbols). Typically, a statement is written on a single line, although a statement can be written over two or more lines. Also, two or more statements can be written on the same line by separating them with semicolons. In general, each new line begins a new statement. It is a good idea to terminate your statements explicitly. You do this with the semicolon (;), which is the JScript statement termination character. Here are two examples of JScript statements.

aBird = "Robin"; // Assign the text "Robin" to the variable aBird

var today = new Date(); // Assign today's date to the variable today

A group of JScript statements surrounded by braces ({}) is called a block. Statements grouped into a block can generally be treated as a single statement. This means you can use blocks in most places that JScript expects a lone statement. Notable exceptions include the headers of for and while loops. Notice that the primitive statements within a block end in semicolons, but the block itself does not.

Generally, blocks are used in functions and conditionals. Notice that unlike C++ and some other languages, JScript does not consider a block to be a new scope; only functions create a new scope. In the following example, the first statement begins the definition of a function that consists of a block of five statements. Following the block are three statements that are not surrounded by braces; these statements are not a block, and are therefore not part of the function definition.

function convert(inches) {

 feet = inches / 12; // These five statements are in a block.

 miles = feet / 5280;

 nauticalMiles = feet / 6080;

 cm = inches * 2.54;

 meters = inches / 39.37;

}

km = meters / 1000; // These three statements are not in a block.

kradius = km;

mradius = miles;

Comments

A single-line JScript comment begins with a pair of forward slashes (//). Here is an example of a single line comment.

aGoodIdea = "Comment your code thoroughly."; // This is a single-line comment.

A multiline JScript comment begins with a forward slash and asterisk (/*), and ends with the reverse (*/).

/*

This is a multiline comment that explains the preceding code statement.

The statement assigns a value to the aGoodIdea variable. The value,

which is contained between the quote marks, is called a literal. A

literal explicitly and directly contains information; it does not

refer to the information indirectly. The quote marks are not part

of the literal.

*/

Note If you attempt to embed one multiline comment within another, JScript interprets the resulting multiline comment in an unexpected way. The */ that marks the end of the embedded multiline comment is interpreted as the end of the whole multiline comment. This means that the text that follows the embedded multiline comment will not be commented out; instead, it will be interpreted as JScript code, and will generate syntax errors.

It is recommended that you write all your comments as blocks of single-line comments. This allows you to comment out large segments of code with a multiline comment later.

// This is another multiline comment, written as a series of single-line comments.

// After the statement is executed, you can refer to the content of the aGoodIdea

// variable by using its name, as in the next statement, in which a string literal is

// appended to the aGoodIdea variable by concatenation to create a new variable.

var extendedIdea = aGoodIdea + " You never know when you'll have to figure out what it does.";

Assignments and Equality

The equal sign (=) is used in JScript statements to assign values to variables: it is the assignment operator. The left hand operand of the = operator is always an Lvalue. Examples of Lvalues are:

· variables,

· array elements,

· object properties.

The right operand of the = operator is always an Rvalue. Rvalues can be an arbitrary value of any type, including the value of an expression. Here is an example of a JScript assignment statement.

anInteger = 3;

The JScript compiler interprets this statement as meaning: "Assign the value 3 to the variable anInteger," or "anInteger takes the value 3."

Be certain you understand the difference between the = operator (assignment) and the == operator (equality). When you want to compare two values to find out if they are equal, use two equals sings (==). This is discussed in detail in Controlling Program Flow.

Expressions

A JScript expression is a 'phrase' of JScript that a JScript interpreter can evaluate to generate a value. The value can be of any valid JScript type - a number, a string, an object, and so on. The simplest expressions are literals. Here are some examples of JScript literal expressions.

3.9 // numeric literal

"Hello!" // string literal

false // boolean literal

null // literal null value

{x:1, y:2} // Object literal

[1,2,3] // Array literal

function(x){return x*x;} // function literal

More complicated expressions can contain variables, function calls, and other expressions. You can combine expressions to create complex expressions using operators. Examples of operators are:

+ // additon

- // subtraction

* // multiplication

/ // division

Here are some examples of JScript complex expressions.

var anExpression = 3 * (4 / 5) + 6;

var aSecondExpression = Math.PI * radius * radius;

var aThirdExpression = aSecondExpression + "%" + anExpression;

var aFourthExpression = "(" + aSecondExpression + ") % (" + anExpression + ")";
JScript Variables

In any programming language, a piece of data is used to quantify a concept.

How old am I?

In JScript, a variable is the name you give that concept; it represents the value at a given instant. When you use the variable, you really mean the data it represents. Here is an example:

NumberOfDaysLeft = EndDate – TodaysDate;

In a mechanical sense, you use variables to store, retrieve, and manipulate all the different values that appear in your scripts. Always create a meaningful variable name; that makes it easy for humans to understand what your scripts do.

Declaring Variables

The first time a variable appears in your script is its declaration. This first mention of the variable sets it up in memory so you can refer to it later on in your script. Always declare variables before using them. You do this using the var keyword.

var count; // a single declaration.

var count, amount, level; // multiple declarations with a single var keyword.

var count = 0, amount = 100; // variable declaration and initialization in one statement.

If you do not initialize your variable in the var statement, it automatically takes on the JScript value undefined. Although it is unsafe to do so, it is legal JScript syntax to omit the var keyword from your declaration statement. When you do, the JScript interpreter gives the variable global scope visibility. When you declare a variable at the procedure level though, you do not want it to be visible at the global scope; in this case, you must use the var keyword in your variable declaration.

Naming Variables

A variable name is an identifier. In JScript, identifiers are used to:

· name variables,

· name functions,

· provide labels for loops.

JScript is a case-sensitive language. This means a variable name such as myCounter is different than the variable name MYCounter. Variable names can be of any length. The rules for creating legal variable names are as follows:

· The first character must be an ASCII letter (either uppercase or lowercase), or an underscore (_) character. Note that a number cannot be used as the first character.

· Subsequent characters must be letters, numbers, or underscores.

· The variable name must not be a reserved word.

Here are some examples of valid variable names:

_pagecount

Part9

Number_Items

Here are some examples of invalid variable names:

99Balloons // Cannot begin with a number.

Smith&Wesson // The ampersand (&) character is not a valid character for variable names.

When you want to declare a variable and initialize it, but do not want to give it any particular value, assign it the JScript value null. Here is an example.

var bestAge = null;

var muchTooOld = 3 * bestAge; // muchTooOld has the value 0.

If you declare a variable without assigning a value to it, it exists, but has the JScript value undefined. Here is an example.

var currentCount;

var finalCount = 1 * currentCount; // finalCount has the value NaN since currentCount is undefined.

Note that the main difference between null and undefined in JScript is that null behaves like the number 0, while undefined behaves like the special value NaN (Not a Number). A null value and an undefined value will always compare to be equal.

You can declare a variable without using the var keyword in the declaration, and assign a value to it. This is an implicit declaration.

noStringAtAll = ""; // The variable noStringAtAll is declared implicitly.

You cannot use a variable that has never been declared.

var volume = length * width; // Error - length and width do not yet exist.

Coercion

The JScript interpreter can only evaluate expressions in which the data types of the operands are the same. Without coercion, an expression that attempts to perform an operation on two different data types (a number and a string for example) would produce an erroneous result. But that is not the case with JScript.

JScript is a loosely typed language. This means its variables have no predetermined type (as opposed to strongly typed languages like C++). Instead, JScript variables have a type that corresponds to the type of value they contain. A benefit of this behavior is that it provides you with the flexibility to treat a value as if it were of another type.

In JScript, you can perform operations on values of differing types without fear that the JScript interpreter will raise an exception. Instead, the JScript interpreter automatically changes (coerces) one of the data types to that of the other, then performs the operation. For example:

	Operation
	Result

	Add a number and a string
	The number is coerced into a string.

	Add a Boolean and a string
	The Boolean is coerced into a string.

	Add a number and a Boolean
	The Boolean is coerced into a number.

Consider the following example.

var x = 2000; // A number.

var y = "Hello"; // A string.

x = x + y; // the number is coerced into a string.

document.write(x); // Outputs 2000Hello.

To explicitly convert a string to an integer, use the parseInt Method. To explicitly convert a string to a number, use the parseFloat Method. Notice that strings are automatically converted to equivalent numbers for comparison purposes, but are left as strings for addition (concatenation).

JScript Data Types

In JScript, there are three primary data types, two composite data types, and two special data types.

The primary (primitive) data types are:

· String

· Number

· Boolean

The composite (reference) data types are:

· Object

· Array

The special data types are:

· Null

· Undefined

String Data Type

A string value is a chain of zero or more Unicode characters (letters, digits, and punctuation marks) strung together. You use the string data type to represent text in JScript. String literals can be included in your scripts by enclosing them in matching pairs of single or double quotation marks. Double quotation marks can be contained within strings surrounded by single quotation marks, and single quotation marks can be contained within strings surrounded by double quotation marks. The following are examples of strings:

"Happy am I; from care I'm free!"

'"Avast, ye lubbers!" roared the technician.'

"42"

'c'

Notice that JScript does not have a type to represent a single character. To represent a single character in JScript, you create a string that consists of only one character. A string that contains zero characters ("") is an empty (zero-length) string.

Number Data Type

In JScript, there is no distinction between integer and floating-point values; a JScript number can be either (internally, JScript represent all numbers as floating-point values).

Integer Values

Integer values can be positive whole numbers, negative whole numbers, and 0. They can be represented in base 10 (decimal), base 8 (octal), and base 16 (hexadecimal). Most numbers in JScript are written in decimal. You denote octal integers by prefixing them with a leading "0" (zero). They can contain digits 0 through 7 only. A number with a leading "0", containing the digits "8" and/or "9" is interpreted as a decimal number.

You denote hexadecimal ("hex") integers by prefixing them with a leading "0x" (zero and x|X). They can contain digits 0 through 9, and letters A through F (either uppercase or lowercase) only. The letters A through F are used to represent, as single digits, 10 through 15 in base 10. That is, 0xF is equivalent to 15, and 0x10 is equivalent to 16.

Both octal and hexadecimal numbers can be negative, but cannot have a decimal portion, and cannot be written in scientific (exponential) notation.

Floating-point Values

Floating-point values can be whole numbers with a decimal portion. Additionally, they can be expressed in scientific notation. That is, an uppercase or lowercase "e" is used to represent "ten to the power of". JScript represents numbers using the eight byte IEEE 754 floating-point standard for numerical representation. This means you can write numbers as large as ±1.7976931348623157x10308, and as small as ±5x10-324. A number that begins with a single "0" and contains a decimal point is interpreted as a decimal floating-point number.

Notice that a number that begins with "0x" or "00" and contains a decimal point will generate an error. Here are some examples of JScript numbers.

	Number
	Description
	Decimal Equivalent

	.0001, 0.0001, 1e-4, 1.0e-4
	Four equivalent floating-point numbers.
	0.0001

	3.45e2
	A floating-point number.
	345

	42
	An integer.
	42

	0378
	An integer. Although this looks like an octal number (it begins with a zero), 8 is not a valid octal digit, so the number is treated as a decimal.
	378

	0377
	An octal integer. Notice that although it only appears to be one less than the number above, its actual value is quite different.
	255

	0.0001
	A floating point number. Even though this begins with a zero, it is not an octal number because it has a decimal point.
	0.0001

	00.0001
	This is an error. The two leading zeros mark the number as an octal, but octals are not allowed a decimal component.
	N/A (compiler error)

	0Xff
	A hexadecimal integer.
	255

	0x37CF
	A hexadecimal integer.
	14287

	0x3e7
	A hexadecimal integer. Notice that the 'e' is not treated as exponentiation.
	999

	0x3.45e2
	This is an error. Hexadecimal numbers cannot have decimal parts.
	N/A (compiler error)

Additionally, JScript contains numbers with special values. These are:

· NaN (not a number). This is used when a mathematical operation is performed on inappropriate data, such as strings or the undefined value

· Positive Infinity. This is used when a positive number is too large to represent in JScript

· Negative Infinity. This is used when a negative number is too large to represent in JScript

· Positive and Negative 0. JScript differentiates between positive and negative zero.

Boolean Data Type

Whereas the string and number data types can have a virtually unlimited number of different values, the Boolean data type can only have two. They are the literals true and false. A Boolean value is a truth-value — it expresses the validity of a condition (tells whether the condition is true or not).

Comparisons you make in your scripts always have a Boolean outcome. Consider the following line of JScript code.

y = (x == 2000);

Here, the value of the variable x is tested to see if it is equal to the number 2000. If it is, the result of the comparison is the Boolean value true, which is assigned to the variable y. If x is not equal to 2000, then the result of the comparison is the Boolean value false.

Boolean values are especially useful in control structures. Here, you combine a comparison that creates a Boolean value directly with a statement that uses it. Consider the following JScript code sample.

if (x == 2000)

 z = z + 1;

else

 x = x + 1;

The if/else statement in JScript performs one action if a Boolean value is true (in this case, z = z + 1), and an alternate action if the Boolean value is false (x = x + 1).

You can use any expression as a comparative expression. Any expression that evaluates to 0, null, undefined, or an empty string is interpreted as false. An expression that evaluates to any other value is interpreted as true. For example, you could use an expression such as:

if (x = y + z) // This may not do what you expect — see below!

Note that the above line does not check if x is equal to y + z, since only a single equal sign (assignment) is used. Instead, the code above assigns the value of y + z to the variable x, and then checks if the result of the entire expression (the value of x) is zero. To check if x is equal to y + z, use the following code.

if (x == y + z) // This is different to the code above!

For more information on comparisons, see Controlling Program Flow.

Null Data Type

The null data type has only one value in JScript: null. The null keyword cannot be used as the name of a function or variable.

A variable that contains null contains "no value" or "no object." In other words, it holds no valid number, string, Boolean, array, or object. You can erase the contents of a variable (without deleting the variable) by assigning it the null value.

Notice that in JScript, null is not the same as 0 (as it is in C and C++). Also note that the typeof operator in JScript will report null values as being of type Object, not of type null. This potentially confusing behavior is for backwards compatibility.

Undefined Data Type

The undefined value is returned when you use:

· an object property that does not exist,

· a variable that has been declared, but has never had a value assigned to it.

Notice that you cannot test to see if a variable exists by comparing it to undefined, although you can check if its type is "undefined". In the following code example, assume that the programmer is trying to test if the variable x has been declared:

// This method will not work

if (x == undefined)

 // do something

// This method also won't work - you must check for

// the string "undefined"

if (typeof(x) == undefined)

 // do something

// This method will work

if (typeof(x) == "undefined")

 // do something

Consider comparing the undefined value to null.

someObject.prop == null;

This comparison is true,

· if the property someObject.prop contains the value null,

· if the property someObject.prop does not exist.

To check if an object property exists, you can use the new in operator:

if ("prop" in someObject)

 // someObject has the property 'prop'

JScript Operators

JScript has a full range of operators, including arithmetic, logical, bitwise, assignment, as well as some miscellaneous operators.

Computational Operators

	Description
	Symbol

	Unary negation
	-

	Increment
	++

	Decrement
	--

	Multiplication
	*

	Division
	/

	Modulus arithmetic
	%

	Addition
	+

	Subtraction
	-

Logical Operators

	Description
	Symbol

	Logical NOT
	!

	Less than
	<

	Greater than
	>

	Less than or equal to
	<=

	Greater than or equal to
	>=

	Equality
	==

	Inequality
	!=

	Logical AND
	&&

	Logical OR
	||

	Conditional (ternary)
	?:

	Comma
	,

	Strict Equality
	===

	Strict Inequality
	!==

Bitwise Operators

	Description
	Symbol

	Bitwise NOT
	~

	Bitwise Left Shift
	<<

	Bitwise Right Shift
	>>

	Unsigned Right Shift
	>>>

	Bitwise AND
	&

	Bitwise XOR
	^

	Bitwise OR
	|

Assignment Operators

	Description
	Symbol

	Assignment
	=

	Compound Assignment
	OP=

Miscellaneous Operators

	Description
	Symbol

	delete
	delete

	typeof
	typeof

	void
	void

	instanceof
	instanceof

	new
	new

	in
	in

The difference between == (equality) and === (strict equality) is that the equality operator will coerce values of different types before checking for equality. For example, comparing the string "1" with the number 1 will compare as true. The strict equality operator, on the other hand, will not coerce values to different types, and so the string "1" will not compare as equal to the number 1.

Primitive strings, numbers, and Booleans are compared by value. If they have the same value, they will compare as equal. Objects (including Array, Function, String, Number, Boolean, Error, Date and RegExp objects) compare by reference. Even if two variables of these types have the same value, they will only compare as true if they refer to exactly the same object.

For example:

// Two primitive strings with the same value.

var string1 = "Hello";

var string2 = "Hello";

// Two String objects, with the same value.

var StringObject1 = new String(string1);

var StringObject2 = new String(string2);

// This will be true.

if (string1 == string2)

 // do something (this will be executed)

// This will be false.

if (StringObject1 == StringObject2)

 // do something (this will not be executed)

// To compare the value of String objects,

// use the toString() or valueOf() methods.

if (StringObject1.valueOf() == StringObject2)

 // do something (this will be executed)

Operator Precedence

Operator precedence is a set of rules in JScript. It controls the order in which operations are performed when an expression is evaluated. Operations with a higher precedence are performed before those with a lower one. For example, multiplication is performed before addition.

The following table lists the JScript operators, ordered from highest to lowest precedence. Operators with the same precedence are evaluated left to right.

	Operator
	Description

	. [] ()
	Field access, array indexing, function calls, and expression grouping

	++ -- - ~ ! delete new typeof void
	Unary operators, return data type, object creation, undefined values

	* / %
	Multiplication, division, modulo division

	+ - +
	Addition, subtraction, string concatenation

	<< >> >>>
	Bit shifting

	< <= > >= instanceof
	Less than, less than or equal, greater than, greater than or equal, instanceof

	== != === !==
	Equality, inequality, strict equality, and strict inequality

	&
	Bitwise AND

	^
	Bitwise XOR

	|
	Bitwise OR

	&&
	Logical AND

	||
	Logical OR

	?:
	Conditional

	= OP=
	Assignment, assignment with operation

	,
	Multiple evaluation

Parentheses are used to alter the order of evaluation determined by operator precedence. This means an expression within parentheses is fully evaluated before its value is used in the remainder of the expression.

For example:

z = 78 * (96 + 3 + 45)

There are five operators in this expression: =, *, (), +, and another +. According to the rules of operator precedence, they are evaluated in the following order: (), +, +, *, =.

1. Evaluation of the expression within the parentheses occurs first. Within the parentheses, there are two addition operators. Since the addition operators both have the same precedence, they are evaluated from left to right. 96 and 3 are added together first, then 45 is added to this total, resulting in a value of 144.

2. Multiplication occurs next. 78 is multiplied by 144, resulting in a value of 11232.

3. Assignment occurs last. 11232 is assigned to z.

Controlling Program Flow

Normally, statements in a JScript script are executed one after the other, in the order in which they are written. This is called sequential execution, and is the default direction of program flow.

An alternative to sequential execution transfers the program flow to another part of your script. That is, instead of executing the next statement in the sequence, another statement is executed instead.

To make a script useful, this transfer of control must be done in a logical manner. Transfer of program control is based upon a decision, the result of which is a truth statement (returning a Boolean true or false). You create an expression, then test whether its result is true. There are two main kinds of program structures that accomplish this.

The first is the selection structure. You use it to specify alternate courses of program flow, creating a junction in your program (like a fork in a road). There are four selection structures available in JScript.

· the single-selection structure (if),

· the double-selection structure (if/else),

· the inline ternary operator ?:
· the multiple-selection structure (switch).

The second type of program control structure is the repetition structure. You use it to specify that an action is to be repeated while some condition remains true. When the conditions of the control statement have been met (usually after some specific number of iterations), control passes to the next statement beyond the repetition structure. There are four repetition structures available in JScript.

· the expression is tested at the top of the loop (while),

· the expression is tested at the bottom of the loop (do/while),

· operate on each of an object's properties (for/in).

· counter controlled repetition (for).

You can create quite complex scripts by nesting and stacking selection and repetition control structures.

A third form of structured program flow is provided by exception handling, which is not covered in this document.

Using Conditional Statements

JScript supports if and if...else conditional statements. In if statements a condition is tested, and if the condition meets the test, the relevant JScript code is executed. In the if...else statement, different code is executed if the condition fails the test. The simplest form of an if statement can be written on one line, but multiline if and if...else statements are much more common.

The following examples demonstrate syntaxes you can use with if and if...else statements. The first example shows the simplest kind of Boolean test. If (and only if) the item between the parentheses evaluates to (or can be coerced to) true, the statement or block of statements after the if is executed.

// The smash() function is defined elsewhere in the code.

// Boolean test of whether newShip is true.

if (newShip)

 smash(champagneBottle,bow);

// In this example, the test fails unless both conditions are true.

if (rind.color == "deep yellow " && rind.texture == "large and small wrinkles")

{

 theResponse = ("Is it a Crenshaw melon?");

}

// In this example, the test succeeds if either condition is true.

var theReaction = "";

if ((dayOfWeek == "Saturday") || (dayOfWeek == "Sunday"))

{

 theReaction = ("I'm off to the beach!");

}

else

{

 theReaction = ("Hi ho, hi ho, it's off to work I go!");

}

Conditional Operator

JScript also supports an implicit conditional form. It uses a question mark after the condition to be tested (rather than the word if before the condition). It also specifies two alternatives, one to be used if the condition is met and one if it is not. A colon must separate these alternatives.

var hours = "";

// Code specifying that hours contains either the contents of

// theHour, or theHour - 12.

hours += (theHour >= 12) ? " PM" : " AM";

If you have several conditions to be tested together, and you know that one is more likely to pass or fail than the others, you can use a feature called 'short circuit evaluation' to speed the execution of your script. When JScript evaluates a logical expression, it only evaluates as many sub-expressions as required to get a result.

For example, if you have an AND expression such as ((x == 123) && (y == 42)), JScript first checks if x is 123. If it is not, the entire expression cannot be true, even if y is equal to 42. Hence, the test for y is never made, and JScript returns the value false.

Similarly, if only one of several conditions must be true (using the || operator), testing stops as soon as any one condition passes the test. This is effective if the conditions to be tested involve the execution of function calls or other complex expressions. With this in mind, when you write Or expressions, place the conditions most likely to be true first. When you write And expressions, place the conditions most likely to be false first.

A benefit of designing your script in this manner is that runsecond() will not be executed in the following example if runfirst() returns 0 or false.

if ((runfirst() == 0) || (runsecond() == 0)) {

 // some code

}

Using Loops

There are several ways to execute a statement or block of statements repeatedly. In general, repetitive execution is called looping or iteration. An iteration is simply a single execution of a loop. It is typically controlled by a test of a variable, where the value of which is changed each time the loop is executed. JScript supports four types of loops: for loops, for...in loops, while loops, do...while loops.

Using for Loops

The for statement specifies a counter variable, a test condition, and an action that updates the counter. Before each iteration of the loop, the condition is tested. If the test is successful, the code inside the loop is executed. If the test is unsuccessful, the code inside the loop is not executed, and the program continues on the first line of code immediately following the loop. After the loop is executed, the counter variable is updated before the next iteration begins.

If the condition for looping is never met, the loop is never executed. If the test condition is always met, an infinite loop results. While the former may be desirable in certain cases, the latter rarely is, so be cautious when writing your loop conditions.

/*

The update expression ("icount++" in the following examples)

is executed at the end of the loop, after the block of statements that forms the

body of the loop is executed, and before the condition is tested.

*/

var howFar = 10; // Sets a limit of 10 on the loop.

var sum = new Array(howFar); // Creates an array called sum with 10 members, 0 through 9.

var theSum = 0;

sum[0] = 0;

for(var icount = 0; icount < howFar; icount++) { // Counts from 0 through 9 in this case.

theSum += icount;

sum[icount] = theSum;

}

var newSum = 0;

for(var icount = 0; icount > howFar; icount++) { // This isn't executed at all, since icount is not greater than howFar

newSum += icount;

}

var sum = 0;

for(var icount = 0; icount >= 0; icount++) { // This is an infinite loop.

sum += icount;

}

Using for...in Loops

JScript provides a special kind of loop for stepping through all the user-defined properties of an object, or all the elements of an array. The loop counter in a for...in loop is a string, not a number. It contains the name of current property or the index of the current array element.

The following code sample should be run from within Internet Explorer, since it uses the alert method, which is not a part of JScript.

// Create an object with some properties

var myObject = new Object();

myObject.name = "James";

myObject.age = "22";

myObject.phone = "555 1234";

// Enumerate (loop through)_all the properties in the object

for (prop in myObject)

{

 // This displays "The property 'name' is James", etc.

 window.alert("The property '" + prop + "' is " + myObject[prop]);

}

Although for...in loops look similar to VBScript's For Each...Next loops, they do not work the same way. The JScript for...in loop iterates over properties of JScript objects. The VBScript For Each...Next loop iterates over items in a collection. To loop over collections in JScript, you need to use the Enumerator object. Although some objects, such as those in Internet Explorer, support both VBScript's For Each...Next and JScript's for...in loops, most objects do not.

Using while Loops

A while loop is similar to a for loop. The difference is, a while loop does not have a built-in counter variable or update expression. If you want to control repetitive execution of a statement or block of statements, but need a more complex rule than simply "run this code n times", use a while loop. The following example uses the Internet Explorer object model and a while loop to ask the user a simple question.

var x = 0;

while ((x != 42) && (x != null))

{

 x = window.prompt("What is my favourite number?", x);

}

if (x == null)

 window.alert("You gave up!");

else

 window.alert("Yep - it's the Ultimate Answer!");

Note Because while loops do not have explicit built-in counter variables, they are more vulnerable to infinite looping than the other types of loops. Moreover, because it is not necessarily easy to discover where or when the loop condition is updated, it is easy to write a while loop in which the condition never gets updated. For this reason, you should be careful when you design while loops.

As noted above, there is also a do...while loop in JScript that is similar to the while loop, except that it is guaranteed to always execute at least once, since the condition is tested at the end of the loop, rather than at the start. For example, the loop above can be re-written as:

var x = 0;

do

{

 x = window.prompt("What is my favourite number?", x);

} while ((x != 42) && (x != null));

if (x == null)

 window.alert("You gave up!");

else

 window.alert("Yep - it's the Ultimate Answer!");

Using break and continue Statements

In Microsoft JScript, the break statement is used to stop the execution of a loop, if some condition is met. (Note that break is also used to exit a switch block). The continue statement can be used to jump immediately to the next iteration, skipping the rest of the code block, while updating the counter variable if the loop is a for or for...in loop.

The following example builds on the previous example to use the break and continue statements to control the loop.

var x = 0;

do

{

 x = window.prompt("What is my favourite number?", x);

 // Did the user cancel? If so, break out of the loop

 if (x == null)

 break;

 // Did they enter a number?

 // If so, no need to ask them to enter a number.

 if (Number(x) == x)

 continue;

 // Ask user to only enter in numbers

 window.alert("Please only enter in numbers!");

} while (x != 42)

if (x == null)

 window.alert("You gave up!");

else

 window.alert("Yep - it's the Ultimate Answer!");

JScript Functions

Microsoft JScript functions perform actions; they can also return values. Sometimes these are the results of calculations or comparisons. Functions are also called "global methods".

Functions combine several operations under one name. This lets you streamline your code. You can write out a set of statements, name it, and then execute the entire set by calling it and passing to it any information it needs.

You pass information to a function by enclosing the information in parentheses after the name of the function. Pieces of information that are passed to a function are called arguments or parameters. Some functions do not take any arguments at all while others take one or more arguments. In some functions, the number of arguments depends on how you are using the function.

JScript supports two kinds of functions: those that are built into the language, and those you create yourself.

Special Built-in Functions

The JScript language includes several built-in functions. Some let you handle expressions and special characters, while others convert strings to numeric values. A useful built-in function is eval(). This function evaluates any valid JScript code that is presented in string form. The eval() function takes one argument, the code to be evaluated. Here is an example using this function.

var anExpression = "6 * 9 % 7";

var total = eval(anExpression); // Assigns the value 5 to the variable total.

var yetAnotherExpression = "6 * (9 % 7)";

total = eval(yetAnotherExpression) // Assigns the value 12 to the variable total.

// Assign a string to totality (note the nested quotes)

var totality = eval("'...surrounded by acres of clams.'");

Consult the language reference for more information about these and other built-in functions.

Creating Your Own Functions

You can create your own functions and use them where needed. A function definition consists of a function statement and a block of JScript statements.

The checkTriplet function in the following example takes the lengths of the sides of a triangle as its arguments. It calculates from them whether the triangle is a right triangle by checking whether the three numbers constitute a Pythagorean triplet (the square of the length of the hypotenuse of a right triangle is equal to the sum of the squares of the lengths of the other two sides). The checkTriplet function calls one of two other functions to make the actual test.

Notice the use of a very small number ("epsilon") as a testing variable in the floating-point version of the test. Because of uncertainties and round-off errors in floating-point calculations, it is not practical to make a direct test of whether the three numbers constitute a Pythagorean triplet unless all three values in question are known to be integers. Because a direct test is more accurate, the code in this example determines whether it is appropriate and, if it is, uses it.

var epsilon = 0.00000000001; // Some very small number to test against.

// The test function for integers.

function integerCheck(a, b, c)

{

 // The test itself.

 if ((a*a) == ((b*b) + (c*c)))

 return true;

 return false;

} // End of the integer checking function.

// The test function for floating-point numbers.

function floatCheck(a, b, c)

{

 // Make the test number.

 var delta = ((a*a) - ((b*b) + (c*c)))

 // The test requires the absolute value

 delta = Math.abs(delta);

 // If the difference is less than epsilon, then it's pretty close.

 if (delta < epsilon)

 return true;

 return false;

} // End of the floating-poing check function.

// The triplet checker.

function checkTriplet(a, b, c)

{

 // Create a temporary variable for swapping values

 var d = 0;

 // First, move the longest side to position "a".

 // Swap a and b if necessary

 if (b > a)

 {

 d = a;

 a = b;

 b = d;

 }

 // Swap a and c if necessary

 if (c > a)

 {

 d = a;

 a = c;

 c = d;

 }

 // Test all 3 values. Are they integers?

 if (((a % 1) == 0) && ((b % 1) == 0) && ((c % 1) == 0))

 {

 // If so, use the precise check.

 return integerCheck(a, b, c);

 }

 else

 {

 // If not, get as close as is reasonably possible.

 return floatCheck(a, b, c);

 }

} // End of the triplet check function.

// The next three statements assign sample values for testing purposes.

var sideA = 5;

var sideB = 5;

var sideC = Math.sqrt(50.001);

// Call the function. After the call, 'result' contains the result.

var result = checkTriplet(sideA, sideB, sideC);

JScript Objects

JScript objects are collections of properties and methods. A method is a function that is a member of an object. A property is a value or set of values (in the form of an array or object) that is a member of an object. JScript supports four kinds of objects: intrinsic objects, objects you create, host objects, which are provided by the host (such as window and document in Internet Explorer) and Active X objects (external components).

Objects as Arrays

In JScript, objects and arrays are handled almost identically. Both can have arbitrary properties assigned to them, and indeed Arrays are merely a special kind of Object. The difference between Arrays and Objects is that arrays have a "magic" length property, whilst objects do not. This means that if you assign a value to an element of an array that is greater than every other element — for example, myArray[100] = "hello" — then the length property will automatically be updated to be 101 (the new length). Similarly, if you modify the length property of an array, it will delete any elements that are no longer part of the array.

All objects in JScript support "expando" properties, or properties that can be added and removed dynamically at run time. These properties can have any name, including numbers. If the name of the property is a simple identifier<<ref for identifier rules>>, it can be written after the object name with a period, such as:

var myObj = new Object();

// Add two expando properties, 'name' and 'age'

myObj.name = "Fred";

myObj.age = 42;

If the name of the property is not a simple identifier, or it is not known at the time you write the script, you can use an arbitrary expression inside square brackets to index the property. The names of all expando properties in JScript are converted to strings before being added to the object.

var myObj = new Object();

// Add two expando properties that cannot be written in the

// object.property syntax.

// The first contains invalid characters (spaces), so must be

// written inside square brackets.

myObj["not a valid identifier"] = "This is the property value";

// The second expando name is a number, so it also must

// be placed inside square brackets

myObj[100] = "100";

Traditionally, array elements are given numeric indices, starting at zero. It is these elements that interact with the length property. Nevertheless, because all arrays are also objects, they support expando properties as well. Note, though, that expando properties do not interact with the length property in any way. For example:

// An array with three elements

var myArray = new Array(3);

// Add some data

myArray[0] = "Hello";

myArray[1] = 42;

myArray[2] = new Date(2000, 1, 1);

// This will display 3, the length of the array

window.alert(myArray.length);

// Add some expando properties

myArray.expando = "JScript!";

myArray["another Expando"] = "Windows";

// This will still display 3, since the two expando properties

// don't affect the length.

window.alert(myArray.length);

Although JScript does not directly support multi-dimensional arrays, you can store any sort of data inside array elements — including other arrays. So you can get the behavior of multi-dimensional arrays by storing arrays within the elements of another array. For example, the following code builds a multiplication table for the numbers up to 5:

// Change this number for a bigger table

var iMaxNum = 5;

// Loop counters

var i, j;

// New array. Make it iMaxNum + 1 because arrays start

// counting at zero, not 1.

var MultiplicationTable = new Array(iMaxNum + 1);

// Loop for each major number (each row in the table)

for (i = 1; i <= iMaxNum; i++)

{

 // Create the columns in the table

 MultiplicationTable[i] = new Array(iMaxNum + 1);

 // Fill the row with the results of the multiplication

 for (j = 1; j <= iMaxNum; j++)

 {

 MultiplicationTable[i][j] = i * j;

 }

}

window.alert(MultiplicationTable[3][4]); // Displays 12

window.alert(MultiplicationTable[5][2]); // Displays 10

window.alert(MultiplicationTable[1][4]); // Displays 4

Intrinsic Objects

Microsoft JScript provides eleven intrinsic (or "built-in") objects. They are the Array, Boolean, Date, Function, Global, Math, Number, Object, RegExp, Error, and String objects. Each of the intrinsic objects has associated methods and properties that are described in detail in the language reference. Certain objects are also described in this section.

Array Object

The subscripts of an array can be thought of as properties of an object, are referred to by their numeric index. Note that named properties added to an Array cannot be indexed by number; they are separate from the array elements.

To create a new array, use the new operator and the Array() constructor, as in the following example.

var theMonths = new Array(12);

theMonths[0] = "Jan";

theMonths[1] = "Feb";

theMonths[2] = "Mar";

theMonths[3] = "Apr";

theMonths[4] = "May";

theMonths[5] = "Jun";

theMonths[6] = "Jul";

theMonths[7] = "Aug";

theMonths[8] = "Sep";

theMonths[9] = "Oct";

theMonths[10] = "Nov";

theMonths[11] = "Dec";

When you create an array using the Array keyword, JScript includes a length property, which records the number of entries. If you do not specify a number, the length is set to 0, and the array has no entries. If you specify a number, the length is set to that number. If you specify more than one parameter, the parameters are used as entries in the array. In addition, the number of parameters is assigned to the length property, as in the following example, which is equivalent to the preceding example.

var theMonths = new Array("Jan", "Feb", "Mar", "Apr", "May", "Jun",

"Jul", "Aug", "Sep", "Oct", "Nov", "Dec");

JScript automatically changes the value of length when you add elements to an array that you created with the Array keyword. Array indices in JScript always start at 0, not 1, so the length property is always one greater than the largest index in the array.

String Object

In JScript, you can treat strings (and numbers) as if they were objects. The string Object has certain built-in methods, which you can use with your strings. One of these is the substring Method, which returns part of the string. It takes two numbers as its arguments.

aString = "0123456789";

var aChunk = aString.substring(4, 7); // Sets aChunk to "456".

var aNotherChunk = aString.substring(7, 4); // Sets aNotherChunk to "456".

// Using the preceding Array creation example:

firstLetter = theMonths[5].substring(0,1); // Sets the firstLetter variable to "J".

Another property of the String object is the length property. This property contains the number of characters in the string (0 for an empty string). This a numeric value, and can be used directly in calculations.

var howLong = "Hello World".length // Sets the howLong variable to 11.

Math Object

The Math object has a number of predefined properties and methods. The properties are specific numbers. One of these specific numbers is the value of pi (approximately 3.14159...). This is the Math.PI property, shown in the following example.

// A radius variable is declared and assigned a numeric value.

var circleArea = Math.PI * radius * radius; // Note capitalization of Math and PI.

One of the built-in methods of the Math object is the exponentiation method, or pow, which raises a number to a specified power. The following example uses both pi and exponentiation.

// This formula calculates the volume of a sphere with the given radius.

volume = (4/3)*(Math.PI*Math.pow(radius,3));

Date Object

The Date object can be used to represent arbitrary dates and times, to get the current system date, and to calculate differences between dates. It has several properties and methods, all predefined. In general, the Date object provides the day of the week; the month, day, and year; and the time in hours, minutes, and seconds. This information is based on the number of milliseconds since January 1, 1970, 00:00:00.000 GMT, which is Greenwich Mean Time (the preferred term is UTC, or "Universal Coordinated Time," which refers to signals issued by the World Time Standard). JScript can handle dates that are in the approximate range 250,000 B.C. to 255,000 A.D.

To create a new Date object, use the new operator. The following example calculates, for the current year, the number of days that have passed and the number of days that are left.

/*

This example uses the array of month names defined previously.

The first statement assigns today's date, in "Day Month Date 00:00:00 Year"

format, to the thisIsToday variable.

*/

var thisIsToday = new Date();

var toDay = new Date(); // Capture today's date.

// Extract the year, the month, and the day.

var thisYear = toDay.getFullYear();

var thisMonth = theMonths[toDay.getMonth()];

var thisDay = thisMonth + " " + toDay.getDate() + ", " + thisYear;

Number Object

In addition to the special numeric properties (PI, for example) that are available in the Math object, several other properties are available in Microsoft JScript through the Number object.

	Property
	Description

	MAX_VALUE
	Largest possible number, about 1.79E+308; can be positive or negative. (Value varies slightly from system to system.)

	MIN_VALUE
	Smallest possible number, about 2.22E-308; can be positive or negative. (Value varies slightly from system to system.)

	NaN
	Special nonnumeric value, "not a number."

	POSITIVE_INFINITY
	Any positive value larger than the largest positive number (Number.MAX_VALUE) is automatically converted to this value; represented as infinity.

	NEGATIVE_INFINITY
	Any value more negative than the largest negative number (-Number.MAX_VALUE) is automatically converted to this value; represented as -infinity.

Number.NaN is a special property that is defined as "not a number." Division by zero, for example, returns NaN. An attempt to parse a string that cannot be parsed as a number also returns Number.NaN. NaN compares unequal to any number and to itself. To test for a NaN result, do not compare against Number.NaN; use the isNaN() function instead.

Creating Your Own Objects

To create instances of your own objects, you must first define a constructor function for them. A constructor function creates a new object, giving it properties and, if appropriate, methods. For instance, the following example defines a constructor function for pasta objects. Notice the use of the this keyword, which refers to the current object.

// pasta is a constructor that takes four parameters.

function pasta(grain, width, shape, hasEgg)

{

 // What grain is it made of?

 this.grain = grain;

 // How wide is it? (number)

 this.width = width;

 // What is the cross-section? (string)

 this.shape = shape;

 // Does it have egg yolk as a binder? (boolean)

 this.hasEgg = hasEgg;

}

Once you define an object constructor, you create instances of it with the new operator.

var spaghetti = new pasta("wheat", 0.2, "circle", true);

var linguine = new pasta("wheat", 0.3, "oval", true);

You can add properties to one instance of an object to change that instance, but those properties do not become part of the definition of other objects made with the same constructor, and do not show up in other instances unless you specifically add them. If you want the extra properties to show up in all instances of the object, you must add them to the constructor function, or to the constructor's prototype object (prototypes are discussed in the Advanced documentation).

// Additional properties for spaghetti.

spaghetti.color = "pale straw";

spaghetti.drycook = 7;

spaghetti.freshcook = 0.5;

var chowFun = new pasta("rice", 3, "flat", false);

// Neither the chowFun object, nor any of the other existing

// pasta objects have the three new properties that were added

// to the spaghetti object.

// Adding the 'foodgroup' property to the pasta prototyp object

// makes it available to all instances of pasta objects,

// including those that have already been created.

pasta.prototype.foodgroup = "carbohydrates"

// now spaghetti.foodgroup, chowFun.foodgroup, etc. all

// contain the value "carbohydrates"

Including Methods in the Definition

It is possible to include methods (functions) in the definition of an object. One way to do this is to add include a property in the constructor function that refers to a function defined elsewhere. For instance, the following example expands on the pasta constructor function defined above to include a toString method that will be called if you display the value of the object.

// pasta is a constructor that takes four parameters.

// The first part is the same as above

function pasta(grain, width, shape, hasEgg)

{

 // What grain is it made of?

 this.grain = grain;

 // How wide is it? (number)

 this.width = width;

 // What is the cross-section? (string)

 this.shape = shape;

 // Does it have egg yolk as a binder? (boolean)

 this.hasEgg = hasEgg;

 // Here we add the toString method (which is defined below).

 // Note that we don't put the parentheses after the name of

 // the function; this is not a function call, but a

 // reference to the function itself.

 this.toString = pastaToString;

}

// The actual function to display the contents of a pasta object.

function pastaToString()

{

 // return the properties of the object

 return "Grain: " + this.grain + "\n" +

 "Width: " + this.width + "\n" +

 "Shape: " + this.shape + "\n" +

 "Egg?: " + Boolean(this.hasEgg);

}

var spaghetti = new pasta("wheat", 0.2, "circle", true);

// This will call toString() and display the properties

// of the spaghetti object (required Internet Explorer).

window.alert(spaghetti);

JScript Reserved Words

JScript has a number of reserved words that you cannot use as identifiers. Reserved words have a specific meaning to the JScript language, as they are part of the language syntax. Using a reserved word causes a compilation error when loading your script.

JScript also has a list of future reserved words. These words are not currently part of the JScript language, although they are reserved for future use.

Reserved Words
	break
	delete
	function
	return
	typeof

	case
	do
	if
	switch
	var

	catch
	else
	in
	this
	void

	continue
	false
	instanceof
	throw
	while

	debugger
	finally
	new
	true
	with

	default
	for
	null
	try
	

Future Reserved Words

	abstract
	double
	goto
	native
	static

	boolean
	enum
	implements
	package
	super

	byte
	export
	import
	private
	synchronized

	char
	extends
	int
	protected
	throws

	class
	final
	interface
	public
	transient

	const
	float
	long
	short
	volatile

When choosing identifiers it is also important to avoid any words that are already the names of intrinsic JScript objects or functions, such as String or parseInt.

