Advanced Object Creation

A constructor is a function you call to instantiate and initialize a particular type of object. You invoke a constructor with the new keyword. Here are a few examples of using constructors.

var myObject = new Object(); // Creates a generic object with no properties.

var myBirthday = new Date(1961, 5, 10); // Creates a Date object.

var myCar = new Car(); // Creates a user defined object, and initializes its properties.

The constructor is passed a reference to a newly created empty object as the value of the special this keyword. It is then responsible for performing appropriate initialization for the new object (creating properties and giving them initial values). When completed, the constructor returns a reference to the object it constructed.

Writing Constructors

You can create objects and initialize them using the new operator in conjunction with predefined constructor functions such as Object(), Date(), and Function(). A powerful feature of object-oriented programming is the ability to define custom constructor functions to create custom objects for use in your scripts. You create custom constructors so you can create objects with properties already defined. Here is an example of a custom constructor (note the use of the this keyword).

function Circle (xPoint, yPoint, radius) {

 this.x = xPoint; // The x component of the center of the circle.

 this.y = yPoint; // The y component of the center of the circle.

 this.r = radius; // The radius of the circle.

}

When you invoke the Circle constructor, you supply values for the circle's center point and the radius (these elements are all that is needed to completely define a unique circle object). You end up with a Circle object that contains three properties. Here is how you would instantiate a Circle object.

var aCircle = new Circle(5, 11, 99);

Using Prototypes to Create Objects

When you write a constructor, you can use properties of the prototype object (which is itself a property of every constructor) to create inherited properties, and shared methods. Prototype properties and methods are copied by reference into each object of a class, so they all have the same values. You can change the value of a prototype property in one object, and the new value overrides the default, but only in that one instance. Other objects that are members of the class are not affected by the change. Here is an example that makes use of the custom constructor, Circle (note the use of the this keyword).

Circle.prototype.pi = Math.PI;

function ACirclesArea () {

 return this.pi * this.r * this.r; // The formula for the area of a circle is πr2.

}

Circle.prototype.area = ACirclesArea; // The function that calculates the area of a circle is now a method of the Circle Prototype object.

var a = ACircle.area(); // This is how you would invoke the area function on a Circle object.

Using this principle, you can define additional properties for predefined constructor functions (which all have prototype objects). For example, if you want to be able to remove leading and trailing spaces from strings (similar to VBScript's Trim function), you can create your own method on the String prototype object, and all strings in your script will automatically inherit the method.

// Add a function called trim as a method of the prototype

// object of the String constructor.

String.prototype.trim = function()

{

 // Use a regular expression to replace leading and trailing

 // spaces with the empty string

 return this.replace(/(^\s*)|(\s*$)/g, "");

}

// A string with spaces in it

var s = " leading and trailing spaces ";

// Displays " leading and trailing spaces (35)"

window.alert(s + " (" + s.length + ")");

// Remove the leading and trailing spaces

s = s.trim();

// Displays "leading and trailing spaces (27)"

window.alert(s + " (" + s.length + ")");

Recursion

Recursion is an important programming technique. It is used to have a function call itself from within itself. One example is the calculation of factorials. The factorial of 0 is defined specifically to be 1. The factorials of larger numbers are calculated by multiplying 1 * 2 * ..., incrementing by 1 until you reach the number for which you are calculating the factorial.

The following paragraph is a function, defined in words, that calculates a factorial.

"If the number is less than zero, reject it. If it is not an integer, round it down to the next integer. If the number is zero, its factorial is one. If the number is larger than zero, multiply it by the factorial of the next lesser number."

To calculate the factorial of any number that is larger than zero, you need to calculate the factorial of at least one other number. The function you use to do that is the function you're in the middle of already; the function must call itself for the next smaller number, before it can execute on the current number. This is an example of recursion.

Recursion and iteration (looping) are strongly related - anything that can be done with recursion can be done with iteration, and vice-versa. Usually a particular computation will lend itself to one technique or the other, and you simply need to choose the most natural approach, or the one you feel most comfortable with.

Clearly, there is a way to get in trouble here. You can easily create a recursive function that does not ever get to a definite result, and cannot reach an endpoint. Such a recursion causes the computer to execute a so-called "infinite" loop. Here's an example: omit the first rule (the one about negative numbers) from the verbal description of calculating a factorial, and try to calculate the factorial of any negative number. This fails, because in order to calculate the factorial of, say, -24 you first have to calculate the factorial of -25; but in order to do that you first have to calculate the factorial of -26; and so on. Obviously, this never reaches a stopping place.

Thus, it is extremely important to design recursive functions with great care. If you even suspect that there is any chance of an infinite recursion, you can have the function count the number of times it calls itself. If the function calls itself too many times (whatever number you decide that should be) it automatically quits.

Here is the factorial function again, this time written in JScript code.

// Function to calculate factorials. If an invalid

// number is passed in (ie, one less than zero), -1

// is returned to signify an error. Otherwise, the

// number is converted to the nearest integer, and its

// factorial is returned.

function factorial(aNumber) {

aNumber = Math.floor(aNumber); // If the number is not an integer, round it down.

if (aNumber < 0) { // If the number is less than zero, reject it.

 return -1;

 }

 if (aNumber == 0) { // If the number is 0, its factorial is 1.

 return 1;

 }

 else return (aNumber * factorial(aNumber - 1)); // Otherwise, recurse until done.

}

Variable Scope

JScript has two scopes: global and local. If you declare a variable outside of any function definition, it is a global variable, and its value is accessible and modifiable throughout your program. If you declare a variable inside of a function definition, that variable is local. It is created and destroyed every time the function is executed; it cannot be accessed by anything outside the function.

Languages such as C++ also have "block scope." Here, any set of braces "{}" defines a new scope. JScript does not support block scopes.

A local variable can have the same name as a global variable, but it is entirely distinct and separate. Consequently, changing the value of one variable has no effect on the other. Inside the function in which the local variable is declared, only the local version has meaning.

var aCentaur = "a horse with rider,"; // Global definition of aCentaur.

// JScript code, omitted for brevity.

function antiquities() // A local aCentaur variable is declared in this function.

{

// JScript code, omitted for brevity.

var aCentaur = "A centaur is probably a mounted Scythian warrior";

// JScript code, omitted for brevity.

 aCentaur += ", misreported; that is, "; // Adds to the local variable.

// JScript code, omitted for brevity.

} // End of the function.

var nothinginparticular = antiquities();

aCentaur += " as seen from a distance by a naive innocent.";

/*

Within the function, the variable contains "A centaur is probably a mounted Scythian warrior,

misreported; that is, "; outside the function, the variable contains the rest of the sentence:

"a horse with rider, as seen from a distance by a naive innocent."

*/

It's important to note that variables act as if they were declared at the beginning of whatever scope they exist in. Sometimes this results in unexpected behaviors.

tweak();

var aNumber = 100;

function tweak() {

 var newThing = 0; // Explicit declaration of the newThing variable.

 // This statement assigns the value undefined to newThing because there is a local variable with the name aNumber.

 newThing = aNumber;

 // The next statement assigns the value 42 to the local aNumberaNumber = 42;

 if (false) {

 var aNumber; // This statement is never executed.

 aNumber = 123; // This statement is never executed.

 } // End of the conditional.

} // End of the function definition.

When JScript executes a function, it first looks for all variable declarations,

var someVariable;

and creates the variables with an initial value of undefined. If a variable is declared with a value,

var someVariable = "something";

then it still initially has the value undefined, and will take on the declared value only when the line containing the declaration is executed, if ever.

JScript processes variable declarations before executing any code, so it does not matter whether the declaration is inside a conditional block or some other construct. Once JScript has found all the variables, it executes the code in the function. If a variable is implicitly declared inside a function - that is, if it appears on the left-hand-side of an assignment expression but has not been declared with var - then it is created as a global variable.
Copying, Passing, and Comparing Data

In JScript, how data is handled depends on its data type.

By Value vs. By Reference

Numbers and Boolean values (true and false) are copied, passed, and compared by value. When you copy or pass by value, you allocate a space in computer memory and copy the value of the original into it. If you then change the original, the copy is not affected (and vice versa), because the two are separate entities.

Objects, arrays, and functions are copied, passed, and compared by reference. When you copy or pass by reference, you essentially create a pointer to the original item, and use the pointer as if it were a copy. If you then change the original, you change both the original and the copy (and vice versa). There is really only one entity; the "copy" is not actually a copy, it's just another reference to the data.

When comparing by reference, the two variables must refer to exactly the same entity for the comparison to succeed. For example, two distinct Array objects will always compare as unequal, even if they contain the same elements. One of the variables must be a reference to the other one for the comparison to succeed. To check if two Arrays hold the same elements, compare the results of the toString() method.

Last, strings are copied and passed by reference, but are compared by value. Note that if you have two String objects (created with new String("something")), they are compared by reference, but if one or both of the values is a string value, they are compared by value.

Note Because of the way the ASCII and ANSI character sets are constructed, capital letters precede lowercase ones in sequence order. For example, "Zoo" compares as less than "aardvark." You can call toUpperCase() or toLowerCase() on both strings if you want to perform a case-insensitive match.

Passing Parameters to Functions

When you pass a parameter to a function by value, you are making a separate copy of that parameter, a copy that exists only inside the function. Even though objects and arrays are passed by reference, if you directly overwrite them with a new value in the function, the new value is not reflected outside the function. Only changes to properties of objects, or elements of arrays, are visible outside the function.

For example (using the Internet Explorer object model):

// This clobbers (over-writes) its parameter, so the change

// is not reflected in the calling code.

function Clobber(param)

{

 // clobber the parameter; this will not be seen in

 // the calling code

 param = new Object();

 param.message = "This will not work";

}

// This modifies a property of the parameter, which

// can be seen in the calling code.

function Update(param)

{

 // Modify the property of the object; this will be seen

 // in the calling code.

 param.message = "I was changed";

}

// Create an object, and give it a property.

var obj = new Object();

obj.message = "This is the original";

// Call Clobber, and print obj.message. Note that it hasn't changed.

Clobber(obj);

window.alert(obj.message); // Still displays "This is the original".

// Call Update, and print obj.message. Note that is has changed.

Update(obj);

window.alert(obj.message); // Displays "I was changed".

Testing Data

When you perform a test by value, you compare two distinct items to see whether they are equal to each other. Usually, this comparison is performed on a byte-by-byte basis. When you test by reference, you are checking to see whether two items are pointers to a single original item. If they are, then they compare as equal; if not, even if they contain the exact same values, byte-for-byte, they compare as unequal.

Copying and passing strings by reference saves memory; but because you cannot change strings once they are created, it becomes possible to compare them by value. This lets you test whether two strings have the same content even if one was generated entirely separately from the other.

Using Arrays

Arrays in JScript are sparse. That is, if you have an array with three elements that are numbered 0, 1, and 2, you can create element 50 without worrying about elements 3 through 49. If the array has an automatic length variable (see Intrinsic Objects for an explanation of automatic monitoring of array length), the length variable is set to 51, rather than to 4. You can certainly create arrays in which there are no gaps in the numbering of elements, but you are not required to.

In JScript, objects and arrays are almost identical to each other. The two main differences are that normal objects do not have an automatic length property, and arrays do not have the properties and methods of an object.

Addressing Arrays

You address arrays by using brackets "[]". The brackets enclose either a numeric value, or an expression that evaluates to a whole number. The following example assumes that the entryNum variable is defined and assigned a value elsewhere in the script.

theListing = addressBook[entryNum];

theFirstLine = theListing[1];

Objects as Associative Arrays

Normally, you use the dot operator "." to access an object's properties. For example,

myObject.aProperty

Here, the property name is an identifier. You can also access an object's properties using the index operator "[]". Here, you are treating the object as an associative array. An associative array is a data structure that allows you to dynamically associate arbitrary data values with arbitrary strings. For example,

myObject["aProperty"] // Same as above.

Although the use of the index operator is more commonly associated with accessing array elements, when used with objects, the index is always the property name expressed as a string literal.

Notice the important difference between the two ways of accessing object properties.

	Operator
	The property name is treated as
	Meaning the property name

	Dot "."
	an identifier
	cannot be manipulated as data

	Index "[]"
	a string literal
	can be manipulated as data

This difference becomes useful when you do not know what the property names will be until runtime (for example, when you are constructing objects based on user input). To extract all the properties from an associative array, you must use the for … in loop.

Special Characters

JScript provides special characters that allow you to include in strings some characters you cannot type directly. Each of these characters begins with a backslash. The backslash is an escape character you use to inform the JScript interpreter that the next character is special.

	Escape Sequence
	Character

	\b
	Backspace

	\f
	Form feed

	\n
	Line feed (newline)

	\r
	Carriage return

	\t
	Horizontal tab (Ctrl-I)

	\'
	Single quotation mark

	\"
	Double quotation mark

	\\
	Backslash

Notice that because the backslash itself is used as the escape character, you cannot directly type one in your script. If you want to write a backslash, you must type two of them together (\\).

document.write('The image path is C:\\webstuff\\mypage\\gifs\\garden.gif.');

document.write('The caption reads, "After the snow of \'97. Grandma\'s house is covered."');

Troubleshooting Your Scripts

There are places in any programming language where you can get caught if you are not careful, and every language has specific surprises in it. Take, for example, the null value: The one in JScript behaves differently than the Null value in the C or C++ languages.

Here are some of the trouble areas that you may run into as you write JScript scripts.

Syntax Errors

Because syntax is much more rigid in programming languages than in natural languages, it is important to pay strict attention to detail when you write scripts. If, for example, you mean for a particular parameter to be a string, you will run into trouble if you forget to enclose it in quotation marks when you type it.

Order of Script Interpretation

JScript interpretation is part of the your Web browser's HTML parsing process. So, if you place a script inside the <HEAD> tag in a document, it is interpreted before any of the <BODY> tag is examined. If you have objects that are created in the <BODY> tag, they do not exist at the time the <HEAD> is being parsed, and cannot be manipulated by the script.

Note This behavior is specific to Internet Explorer. ASP and WSH have different execution models (as would other hosts).

Automatic Type Coercion

JScript is a loosely typed language with automatic coercion. Consequently, despite the fact that values having different types are not equal, the expressions in the following example evaluate to true.

"100" == 100;

false == 0;

To check that both the type and value are the same, use the strict equality operator, ===. the following both evaluate to false:

"100" === 100;

false === 0;

Operator Precedence

When a particular operation is performed during the evaluation of an expression has more to do with operator precedence than with the location of the expression. Thus, in the following example, multiplication is performed before subtraction, even though the subtraction appears first in the expression.

theRadius = aPerimeterPoint - theCenterpoint * theCorrectionFactor;

Using for...in Loops with Objects

When you step through the properties of an object with a for...in loop, you cannot necessarily predict or control the order in which the fields of the object are assigned to the loop counter variable. Moreover, the order may be different in different implementations of the language.

with Keyword

The with statement is convenient for addressing properties that already exist in a specified object, but cannot be used to add properties to an object. To create new properties in an object, you must refer to the object specifically.

this Keyword

Although you use the this keyword inside the definition of an object, to refer to the object itself, you cannot ordinarily use this or similar keywords to refer to the currently executing function when that function is not an object definition. You can, if the function is to be assigned to an object as a method, use the this keyword within the function, to refer to the object.

Writing a Script That Writes a Script in Internet Explorer

The </SCRIPT> tag terminates the current script if the interpreter encounters it. To display "</SCRIPT>" itself, rewrite this as at least two strings, for example, "</SCR" and "IPT>", which you can then concatenate together in the statement that writes them out.

Implicit Window References in Internet Explorer

Because more than one window can be open at a time, any window reference that is implicit is taken to point to the current window. For other windows, you must use an explicit reference.

Conditional Compilation

Conditional compilation allows the use of new JScript language features without sacrificing compatibility with older versions that do not support the features.

Conditional compilation is activated by using the @cc_on statement, or using an @if or @set statement. Some typical uses for conditional compilation include using new features in JScript, embedding debugging support into a script, and tracing code execution.

Always place conditional compilation code in comments, so that hosts (like Netscape Navigator) that do not understand conditional compilation will ignore it. Here is an example.

/*@cc_on @*/

/*@if (@_jscript_version >= 4)

 alert("JScript version 4 or better");

 @else @*/

 alert("You need a more recent script engine.");

/*@end @*/

This example uses special comment delimiters that are only used if conditional compilation is activated by the @cc_on statement. Scripting engines that do not support conditional compilation only see the message informing of the need for a new scripting engine.

Conditional Compilation Variables

The following predefined variables are available for conditional compilation. If a variable is not true, it is not defined and behaves as NaN when accessed.

	Variable
	Description

	@_win32
	True if running on a Win32 system.

	@_win16
	True if running on a Win16 system.

	@_mac
	True if running on an Apple Macintosh system.

	@_alpha
	True if running on a DEC Alpha processor.

	@_x86
	True if running on an Intel processor.

	@_mc680x0
	True if running on a Motorola 680x0 processor.

	@_PowerPC
	True if running on a Motorola PowerPC processor.

	@_jscript
	Always true.

	@_jscript_build
	Contains the build number of the JScript scripting engine.

	@_jscript_version
	Contains the JScript version number in major.minor format.

